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ELEMENTS OF HYDROSTATICS.

SECTION 1.
GENERAL PROPERTIES OF FLUIDS,

Arr. 1. A rruip is a body which can be divided in any
direction, and the parts of which can be moved among one
another by any assignable force.

Elastic fluids are those the dimensions of which are increased
or diminished when the pressure upon them is diminished or
increased. Nob-elastic fluids are those the dnnenslons of which
are independent of the pressure.

Water, mercury, and probably all other liquids, are in
a small degree compressible. Their resistance however to com-
pression is so great, that the conclusions obtained on the sup-
position of their being incompressible, are in most cases free
from any seosible error.

2. Let DEF (fig. 1) be a piston without weight exactly
fitting an orifice in the plane ABC, which forms the side of a
vessel containing fluid. It is manifest that the fluid can make
no effort to move the piston in any other direction than that of
a normal to its surface, the plston may therefore be kept at rest
by a force applied at some point G in it, and acting in a
direction HG perpendicular to DEF. A force equal and
opposite to this is called the pressure of the fluid on DEF.

The pressure of a fluid at a given point is measured by
the quantity p, px being the pressure of the fluid on an inde-
finitely small area x contiguous to the given point. .

When the pressure of a fluid on a given surface is the same,
wherever that surface is placed, p is the pressure on a unit of
1




2 GENERAL PROPERTIES OF FLUIDS.

surface. When the pressure on a given surface, varies with the
situation of the surface, p is the pressure which would be exerted
on a unit of surface, if the pressure at each part of the unit of
surface were equal to the pressure at the given point.

8. The characteristic property of fluids, which distin-
guishes them essentially from solids, is the faculty they possess
of transmitting equally, and in all directions, the pressures

applied to their surfaces. This property, which forms the .

basis of the theory of the equilibrium of fluids, is sometimes
assumed as self-evident; it admits however of the following
demonstration, founded upon the principle, that when a fluid
is at rest, any portion of it may become solid without dis-
turbing its own equilibrium, or disturbing the equilibrium or
altering the pressure of the surrounding fluid.

"To prove that fluids press equally in all directions.

Let the fluid contained within the prism 4bc (fig. 2), in
the interior of a fluid at rest, become solid. The equilibrium
of Abc and the pressure of the surrounding fluid will not be
altered. Let R be the accelerating force at 4, and therefore
R .(mass prism) the moving force on the prism: the only other
forces that act upon it are the pressures upon its ends and sides.
Since the prism is at rest, the forces, R.(mass prism), and
the pressures upon the ends and sides must be in equilibrium..
If the prism be diminished indefinitely, retaining its original
proportions, the force R.(mass prism) will vanish compared
with the pressures of the surrounding fluid, for the former is
proportional to 4a, the latter to 4a, and we may consider
the prism to be kept at rest by the pressures upon its ends
and sides. These pressures are respectively parallel and per-
pendicular to ABC, therefore they must be separately in
equilibrium.  Since the pressures on A4b, dc, Cb, are in
equilibrium and perpendicular to the sides 4B, 4C, CB of
the triangle ABC, they are proportional to those sides; hence,
if p. Ab, q. Ac be the pressurcs upon the sides 4h, 4c¢ respect-
ively, _

p.4db AR Ab 4B

‘— - = —., therefore, since — =

gAc” AC Ac-4cPTT
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GENERAL PROPERTIES OF FLUIDS. 3

. But (2) p, g measure the pressures of the fluid at 4
perpendicular to 4b, Ac respectively, and 4b, Ac may be
taken perpendlcular to any two given lines. Hence fluids presu
equally in all directions.

4. Suppose the sides of the base of the prism to be inde-
finitely small compared with its length. Then, if the pressure
on ABC be increased or diminished in any degree without
disturbing the equilibrium of Abe, the pressure on abc must
be equally increased or diminished. Hence if F, G, H......
M, N, P (fig. 3) be any series of points in a fluid at rest, so
taken that the straight lines G, GH...... MN, NP may be
wholly within the fluid, and the pressure at F be increased or
diminished without disturbing the equilibrium of the fluid, the
pressures at G, H...... M, N, P will be equally increased or
diminished.

If the fluid be acted on by no accelerating force, the
pressures on ABC, abc must be equal ; therefore pressure at
F = pressure at G = ... = pressure at N = pressure at P: or,
the pressure is the same at all points in a fluid at rest acted on

. by no accelerating force.

5. Let 4, B, C,...be pistons fitting cylindrical pipes
which communicate with the inside of a vessel filled with
fluid; and let the forces P, Q, R,...be in equilibrium when
applied to the pistons 4, B, C,...in directions parallel to
the axes of the cylinders and tending inwards. Let a, b, ¢
be the areas of the pistons, and. suppose the fluid to be acted
upon by no accelerating force, then, the fluid being at rest,
the pressures which it exerts upon a unit of the surface of
each piston must be equal, therefore (2)

6. Let the fluid be incompressible; Ps g5 75...the dis-
tances of the pistons from fixed points in the axes of the
cylinders in which they play and without the fluid; p’, ¢’, 7',...
their distances from the same points after they have been
moved in any manner so that they still remain in contact with




4 GENERAL PROPERTIES OF FLUIDS.

the fluid. Let V- be the volume of the portion of the vessel
bounded by sections passing through the fixed points perpen-
dicular to the axes of the cylinders, then, the volume of the
fluid at first will be

V-(ap+bg+ecr+...... )
and after the pistons have been moved
V-(ap'+bg+cr'+......).

These are equal, for the whole quantity of fluid remains unal-
tered, therefore

a(@-p) +b(g-q) +c(r—1) +...... =0
But—-g-ﬁ- ...... (5),
¢
s PP-p)+Q(Q-q)+ R(¥-1) +...... = 0.
p=-p, ¢=¢q Y=1y.e..... the spaces described by the pistons

estimated in the directions in which the forces act, are propor-
tional to the virtual velocities of the pistons. Hence, the sum
of the products of each force into the virtual velocity of the
piston to which it is applied = 0. '




SECTION 1II.

ON THE EQUILIBRIUM OF NON-ELASTIC FLUIDS ACTED ON BY
GRAVITY.

ArT. 7. CERTAIN standard units of space, volume and
weight baving been assumed, the specific gravity, mass and
density of a body may be defined as follows. .

The specific gravity of a body is the. weight of a unit of its
volume.

The density of a body is the quantity of matter in a unit
of its volume.

Let W, M, V be the number of units of weight, mass, and
volume contained in the weight, mass, and volume of a given
body, S its specific gravity, D its density, g the force of gra-
vity ; then

§ = weight of one unit = gD,
M = mass of V units = DV,
W = weight of V units = SV = gDV.

8. When a fluid acted on by gravity is at rest, the
pressures are equal at all points in the same horizontal plane.

Let P, Q (fig. 4) be any two points in the same horizontal
plane in the interior of a fluid at rest, and let the fluid con-
tained within a very slender prism, of which PQ is one edge,
become solid. The prism is horizontal, therefore the pressures
upon its ends are the only forces that act upon it in the direc-
tion PQ; and it remains at rest, therefore these pressures are
equal. But the ends are equal, therefore the pressures at
P and Q are equal.

If any portion of the fluid become solid without inter-
‘rupting the communication by means of a canal of any form

F
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6 FQUILIBRIUM OF XON-ELASTIC FLUIDS.

between P and Q, the pressures at those points will remain
unchanged. Hence the pressure of the fluid is the same at all
points in the same horizontal plane, whatever be the form of
the vessel containing it.

9. To find the pressure at any point in a mass of fluid
at rest,

Let the flaid contained within the vertical prism 4EF
(fig. 5), in the interior of & fluid at rest, become solid. Its
weight, and the pressures upon its ends, are the only forces
that act upon it in a vertical direction, therefore, since the
prism is st rest, these must be in equilibrium; therefore
pressure on DEF = weight of prism AEF + pressure on ABC.
Let m, p be the pressures at 4, D respectively, p the density
of the fluid, 4BC=x, AD =z; then the pressure on
ABC = m«, the pressure on DEF = px, and the weight of
AEF = gpz«; therefore px = gpzx + mr, therefore

pPe=gpz+m

When 4 is a point in the open surface of the fluid, having
no other fluid above it, m = 0,’and therefore p = gp=.

Bince fluids presé equally in all directions, and the pressure
is the same at all points in the same horizontal plane, the
pressure on a small area of any plane is ultimately equal to the

. pressure on an equal area of the hcrizontal plane that inter-

sects it.

10. ‘I'he surface of a fluid at rest is a horizontal plane.

1at A, P (fig. 0) be any two points in the surface of a
fluid at rest, AN, 1’Q vertical straight lines intersected by a
horizontal plane in B, Q: p the density of the fluid. Then,
(%, 1) gp.I'Q @ pressure at Q = pressure at B =gp.AB;
therefure 1'Q &= AN, therefore A and P are in the same hori-
wminl plane,

15, 'Fhe common sarfuce of two fluids that do not mix is
n horizamtal plane.,

Lot A, J' (fig. 7) be any two pointsin the common sur-
far e of twor flaide that do vot mix; BAC, QPR vertical straight *



EQUILIBRIUM OF NON-ELASTIC FLUIDS. 7

lines intersected by horizontal planes in B, Q, andin C, R ;.
ps o the densities of the upper and under fluids respectively.
Then, (9) pressure at 4 — pressure at B = gp.AB,

also pressure at C — pressure at 4 = gg.4C,
.. pressure at C — pressure at B = g.(p.4B+0.AC);
in like manner .
pressure at R — pressure at Q = g (0. PQ + 0. PR),
and, (8) pres. at Q = pres. at B, pres. at R = pres. at C,

<. p-PQ+c.PR=p.AB + 5.AC,

and 0.PQ +0.PR=0.4B +¢.4C,
<o (0=p).PQ=(c-p)-4B;

., PQ=AB, .. A and P are in the same horizontal plane. )

12. If two fluids that do not mix meet in a bent tube, the
altitudes of their surfaces above the horizontal plane in which

they meet are inversely as their densities. S

Let PAQ (fig. 8) be a bent tube containing two fluids of
different densities; 4P, 4Q the portions of the tube occupied
by the lighter and heavier fluids ; p, o the densities of the fluids
in AP, AQ. Let the planes of the surfaces of the fluids, and
the plane in which they meet cut a vertical in H, K, C.

The pressure of the fluid in 4P at 4 = gp. HC,
and the pressure of the fluid in 4Q at 4 = go.KC.

When the fluids are in equilibrium these pressures must be
equal, therefore p. HC = 0. KC';
p KC

e HC

" 13. To find the pressure of a fluid on any surface.

Let BPC (fig. 9) be the given surface. Draw AKX vertical
meeting the surface of the fluid in 4, through H, X draw hori-
zontal planes meeting the surface BPC in the curves PM, QN.
Let P be the pressure on MPB, § the area of MPB, p the
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8 EQUILIBRIUM OF NON-ELASTIC FLUIDS,

density of the fluid, X the depth of the center of gravity of BPC
below the surface of the fluid, 4H =z, HK = 8z, therefore,
ultimately, pressure on MQ=d,P.0x, area MQ =d,S.d=.
But, ultimately,

pressure on MQ = gp. AH.MQ = gp.x.d,S.0x ;
- . dP=gp.2.d.S;
<. P=gp.[z.d,S,
and the pressure on the whole surface BPC

= gp. _/,.r.d,S,
the integral being taken between the limits corresponding to
the highest and lowest points in the surface.
But X.(area BPC) = [,x.d,S between the same limits ;
.. pressure on BPC = ¢p X.(area BPC);

or, the pressure of a fluid on any surface is equal to the weight
of a column of the fluid.the base of which is equal to the area
of the surface, and altitude equal to the depth of the center of
gravity of the surface below the surface of the fluid.

When the surface BPC is a plane, the pressures are all
perpendicular to BPC, and consequently parallel to each other ;
therefore the resultant of the pressure on BPC is equal to the
whole pressure, and acts in a direction perpendicular to BPC.

14. The centre of pressure of a plane surface immersed
in a fluid is the point in which the resultant of the pressure of
the fluids meets that surface.

To find the center of pressure of any plane surface.

Let ABC (fig. 10) be the surface, OY the line in which its
plane cuts the surface of the fluiid. From O draw OX in the
plane ABC perpendicular to OY, and let X, ¥ be the co-ordi-
nates of the center of pressure referred to the axes 0.X, OY.

Then, since the pressures_are parallel to each other, we
shall have, (Whewell's Mechanics, 84; Snowball’s Mechanics,

169).
X .(pressure on 4BC) = moment of pressure on 4BC round OY,
Y.(pressure on 4 BC) =moment of pressure on ABC round OX.
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Draw MP, NQ parallel to 0X; HP, KQ parallel to OY; PT
perpendicular to the surface of the fluid meeting it in 7

Let OH= iz, HK = 822, OM =y, MN =3y, TMP =6,
the density of the fluid = p. Therefore, ultimately, pressure
on. PQe= gp-PT.PQ = gp.sin 0.2.8z.8y:

moment of the pressure on PQ round OY
=gp.MP.PT.PQ=gp.sin0.2".02.3y;
moment of the pressure on PQ round OX
=gp.HP.PT.PQ = gp.sin 0.2y.8x.dy ;
.. pressure on ABC = gp.sinf.[ [,z ;
moment of the press. on 4BC round OY = gp.sin@. [, f,2*;
moment of the press. on ABC round OX = gp.sin 6. [, f,ay;

the integrals being taken between limits corresponding to the
boundary of the surface.

o Xoffwm [ V.LfwaLhay.

If ABC were a plane lamina of very small uniform thick-’

ness, moveable round the axis OF, the above values of X and
Y would be those of the co-ordinates of its center of per-
cussion.”

15. Let one side of the plane ABC be exposed to the
pressure of the fluid ; then, since the center of pressure of 4BC
is the point of application of the resultant of the pressure of
the fluid on 4BC, the plane may be kept at rest by a single
force equal and opposite to the pressure of the fluid acting ina
perpendicular to it through its center of pressure,

16. "To find the vertical pressure of a fluid on any surface.

Let PQR, (fig- 11) be the given surface; let the surface
generated by a vertical line moving along the boundary of PQR
meet the surface of the fluid in 4BC; and suppose the fluid
within 4BR to become solid. The vertical pressure of the
fluid on PQR and the weight of ABR are the only forces that
act vertically on 4BR; therefore, since ABR remains at rest,
these forces must be equal to each other, and act in the same
straight line, in opposite directions. Hence the pressure of the

2
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12 EQUILIBRIUM OF NON-ELASTIC FLUIDS.

out altering the pressure at any point in V. In this case the
pressure at any point in the surface of ¥V will be equal and
opposite to the pressure at the same point in the former case.

Consequently the resultant of the pressure in the latter case -

will be equal and opposite to the resultant of the pressure in
the former case. Hence the resultant of the pressure of a fluid
on the inside of the vessel containing it is equal to the weight
of the fluid, and acts downwards in a vertical through the center
{ of gravity of the fluid.

21. When a solid floats in equilibrium, the weight of the
solid is equal to the weight of the fluid displaced, and the line
joining the centers of gravity of the solid and of the fluid
displaced is vertical.

The weight of the solid and the pressure of the fluid on
the surface of the portion of the solid immersed are the only
forces that act upon the solid. Therefore, since the solid is at
rest, the weight of the solid and the resultant of the pressure
of the fluid on its surface must act in opposite directions in the
same straight line. But the weight of the solid acts downwards
in a vertical through the center of gravity of the solid, and the

resultant of the pressure of the fluid is equal to the weight of .

the fluid displaced, and acts upwards in a vertical through the
center of gravity of the fluid displaced. Hence the weight of
the solid is equal to the weight of the fluid displaced, and the
line joining the centers of gravity of the solid and of the fluid
displaced is vertical.

22. To find the conditions of equilibrium of a solid sus-
pended in a fluid by a string.

Let GN, FM (fig. 18) be verticals through the centers of
gravity of the solid, and of the fluid displaced by it, EL the
direction of the string by which the solid is suspended, 7' the
tension of the string, W the weight of the solid, V the volume
of the fluid displaced, p its density, and therefore gp/ the
weight of the fluid displaced, or (21) the resultant of the
pressure of the fluid on the solid.  Now W acts downwards in
GN, gpV acts upwards in FM ; hence in order that the solid
may be kept at rest by 7" acting in XL, L must be vertical,

T A e e e e
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and in the same plane with FM, GN; T = W - gpV acting
upwards, or gp ¥V — W acting downwards, according as W is
greater or less than gpV'; and if EGF be drawn perpendicular
to GN in the plane GFN, W.GE =gpV.FE.

23. Wacting downwards in GN, and gp ¥V acting upwards
in FM may be resolved into a single force W - gpV acting
downwards in GN, and a “couple” gp V.FG in the plane
MGF tending to make the solid revolve in the direction GFM ;
hence if any forces acting on the solid can be resolved into a
single force W — gp ¥ acting upwards in NG, and a “ couple”
£pV.FG in the plane MGF tending to make the solid revolve
in the direction MGF, they will keep it at rest.

24. To find the positions in which a solid can float in
equilibrium.

Let f (2, y, #) =0 be the equation to the surface of the solid,

&

-+ % +E-l the equaiion to the surface of the fluid, the

center of gravity of the solid being the origin of the co-ordinates ;
7 the volume of the fluid displaced by the solid ; X, Y, Z the
- co-ordinates of the center of gravity of the fluid displaced; p the
density of the fluid; W the weight of the solid. Then gp 14

. . <y 30 d
will be the weight of the fluid displaced, and au ? -— Z the

equations to the line joining the centers of gravity of the solid
and of the fluid displaced. But when the solid is at rest, its
weight is equal to the weight of the fluid displaced, and the
line joining the centers of gravity of the solid and of the
fluid displaced is perpendicular to the surface of the fluid,
therefore

WagpV, and a X = bY =cZ. Also
Vellft, V.X=fyla, V.¥=L )y V.Z=[] )=
The limits of the integrations being determined by the equations

& -4
f(.'”s.'/’z,v)‘o, and ;+g+;=l.
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Whence, having found the different values of a, b, ¢, the
equation to the surface of the fluid corresponding to each posi-
tion of equilibrium of the solid becomes known.

The section of a solid floating in equilibrium made by the
surface of the fluid, is called the plane of floatation.

25. To determine whether the equilibrium of a floating”
solid is stable or unstable.

Let ‘the equilibrium of the solid be slightly disturbed by
making it revolve through a very small angle in a vertical plane,
without altering the quantity of fluid displaced. The resultant
of the pressure of the fluid on the solid in its mew position
will still be equal to the weight of the solid, and will therefore
have no tendency to elevate or depress the center of gravity
of the solid; but, since it acts in a vertical through the center
of gravity of the fluid displaced, unless the line joining the
centers of gravity of the solid and of the fluid displaced should
happen to be vertical, will tend to make the solid rotate round
a horizontal axis through its center of gravity. When a
vertical plane can be found, in which the solid being slightly
inclined, the pressure of the fluid tends to make the solid recede
farther from its original position, that is, when a force acting
upwards in a vertical through the center of gravity of the fluid
displaced tends to increase the angle through which the solid
has revolved, the equilibrium of the solid will be unstable.
When on the contrary the pressure of the fluid tends to diminish
the angle through which the solid has revolved, in whatever
vertical plane it may have been inclined, the equilibrium will
be stable.

26. When the equilibrium of a solid is slightly disturbed
by making it revolve through a very small angle in a given
vertical plane; to find the vertical through the center of gravity
of the fluid displaced, the plane of floatation being symmetrical
with respect to the vertical plane through the center of gravity
of the solid in which the solid has been inclined.

Let G, H (fig. 15) be the centers of gravity of the solid
and of the fluid displaced by it, when floating in equilibrium.
Let a plane through GH meet the plane of floatation in 4CB,

’
. - - ‘ Cri, o 2=

~ .
&/ f 4 ¢ )'_, i ¢ : LA
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and the surface of the solid in 4DB. Suppose the solid to
revolve through a very small amgle 6 in the plane 4 DB, so that
the quantity of fluid displaced may be the same as before; and
let ADB meet the surface of the fluid in aCb. Draw MF
vertical through the center of gravity of the fluid displaced by
the solid in its new position; and mp, nq vertical through the
centers of gravity of the wedges ACa, BCb. Then since the
plane of floatation is symmetrical with respect to the plane
ADB, mp, ng, and consequently MF will be in the plane
ADB. Draw HFE parallel to ab.

Now, if a body be divided into any number of parts, the
moment of the whole body with respect to a given plane is
equal to the sum of the moments of each part with respect to
the same plane. Hence, since the density is uniform and
therefore the mass proportional to the volume, (vol. aDb).FE
+ (wedge ACa).Cm = moment of ACbD with respect to a
plane through CE perpendicular to 4BD = (vol. ADB). HE
~ (wedge BCd).Cn.

Let @, y be the co-ordinates of any point in the plane of
floatation, ACB being the axis of x, and YC¥” the intersection
of the surface of the fluid and the plane of floatation, and
therefore a perpendicular to 4Ca, the axis of y. If vertical
planes be drawn parallel to CY at the distances «, z + dx,
the portion of either wedge contained between them will be
20aydz, and the moment of this portion round CY will be
202’ydxr. Hence

wedge ACa = 20 [y, from C to 4,
= @ (moment of ¥AY" round C¥);
(wedge ACa) Cm = 20 [,2*y, from C to 4
= @ (mom. inert. of Y4Y round CY).
In like manner
wedge BCb = 6 (moment of ¥BY" round C¥),
(wedge BCb) Cn = 6 (mom. inert. of YBY" round CY).

The volumes a Db, ADB are equal ; therefore, subtracting
a DB from each,

wedge 4Ca = wedge BCb;

——-
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hence the moments of Y4Y" and ¥YBY round CY are equal,
and therefore CY passes through the center of gravity of the
plane of floatation.

(wedge ACa) Cm + (wedge BC)) Cn
= @ (mom. inert. YAY" round CY)
+ @ (mom. inert. YBY" round CY)
-0k A,

where k' 4 is the moment of inertia of the plane of floatation
round CY. If the volume of the fluid displaced = ¥, we have

(volL. ADB).HE -~ (vol. aDb). FE=V.HF = V.HM.0;
- V.HM=kKA.

The poiot M, in which FAM ultimately cuts HG is called
the metacentre.

A force acting in the direction FM will tend to diminish or
increase the angle HMF according as M is above or below G ;
therefore the equilibrium of the solid will be stable or unstable
sccording as M is above or below G.

27. If the plane of floatation be not symmetrical with

to ADB, let aYb (fig. 16) be the section of the solid

made by the surface of the fluid; and let H, G, &c. be the

projections of H, G, ke. in (fig. 15) on theplane ¢ ¥b. Draw

p7, 43, MN perpendicular to ab. It may be proved as before,

that the center of gravity of the plane of floatation lies in C'¥,
and that V.HN = 6k* A.

Alvs
V.MN 4 (wedge YaY').pr = (wedge YbY").qs.

If 2w, semtical planes be drawn parallel to C¥ at the dis-
tarvst 2, & ~ 22, and if two other vertical planes be drawn
paracel v ab at the distanest y, y 4+ cy, the portion of either
weriye 1spn ot St wents ttern Vill be Bz Z 2y, and the moment
Ao grsin, 1iratd ab will be Bzylacy.

e
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(wedge YaY').pr= - 0., [ xy, from a to C;
(wedge YbY').qs =6.[,[,zy, from C to b;
*. (wedge YbY").qs — (wedge YaY').pr
= 0./, [,#y from C to b +0.[,[,xy from a to c
=0.[[,zy, from a to b;
“ if Tw [,y from a to b,
V.MN =0T.

The equilibrium will be stable or unstable according as H and
G lie on the same or on opposite sides of MN.



SECTION III.

ON THE EQUILIBRIUM OF ELASTIC FLUIDS ACTED ON BY GRAVITY.

ArTt. 28. To measure the pressure of the atmosphere.

Let a glass tube 4BC (fig. 17) closed at the end 4, be
bent at B and D, so that the branches 4D, BC may have
a common axis PQ, 4B being about thirty one inches longer
than BC. Then if 4B be filled with mercury, and placed so
that PQ may be vertical, the mercury will sink in 4B, leaving
a vacuum in the upper part of the tube, and rise in BC till
the pressure of the mercury at the common surface of the air
and mercury in BC is equal to the pressure of the atmosphere.
Let PQ meet the upper and lower surfaces of the mercury in
P, Q; and let I1 be the pressure of the atmosphere, o the den-
sity of the mercury; then (9) the pressure of the mercury at
Q=go.PQ; and this must be equal to the pressure of the
atmosphere at Q when the mercury is at rest;

*“ [I=go.PQ.

An instrument of this description furnished with a scale for
measuring PQ, is called a barometer.

29. If gy, o, be the densities of mercury at 0°, # (Centi-
grade) as indicated by a mercurial thermometer (see Sect. vir.)
it is found that g, (1 + et) = g,, where e = 0,00018018.

Whence ;= a, (1 - ef) very nearly.

If in fig. 17 PQ=h, and if the temperature of the mer-
cury = ¢,

N =goh=go,h(1-el).

30. The mean pressure of the atmosphere at the level of
the wa appears to vary with the latitude. The heights of the
column of mercury which it supports in different latitudes,
according to the most trustworthy observations, arc as follows,
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the temperature of the mercury being that of melting snow,
and the heights expressed in English inches:

Lat, Helght. Lat. Helght,

0° 29,930 49° 29,978
10 29,975 514 29,951
20 30,064 | 54} 29,926
30 30,108 60 29,808
40 30,019 64 29,606
45 30,000 67 29,678

The mean pressure of the atmosphere at the level of the sea
is greater at about 9 a.M. and 9 .M., and is less at 8 p.u. and
8 A.. than the mean pressure for the whole day. The differ-
ence between the greatest and least of these pressures, or the
diurnal oscillation, as it is usually called, is equivalent to the
pressure of a column of mercury the height of which is ex-
pressed in inches by the formula

0,1198 (cos lat.): - 0,0149.

(Report on Meteorology, by Prof. Forbes.) The mean pres-
sure is also subject to an annual oscillation, the magnitude of
which, except for some particular spots, has not yet been ascer-
tained. Within a zone which extends probably to the parallel
of 40° on either side of the equator the greatest and least atmo-
spheric pressures appear to correspond to the greatest and least
meridian zenith distances of the sun. Thus at Madras (lat.
18°4’ N.) the mean height of the mercury in the barometer in
January is 0,21 inches greater than in July. At Calcutta
(lat. 224°N.) the difference amounts to 0,52 inches. At the
Cape of Good Hope (lat. 84° S.) the height is 0,29 greater i

July than in January. :

31. The pressure of air at a given temperature varies
inversely as the space it occupies.

Let a glass tube ABD (fig. 18) closed at 4, and having
the shorter branch 4B bent parallel to the longer BD, be

o ——- e 0004 o Smr—g———

placed so that PC the axis of 4B may be vertical. Pour )

a small quantity of mercury into BD, and by withdrawing

—
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some of the air in 4B or adding mercury make it stand at the
same height in both branches. Let its surface meet PC in P.
Pour in more mercury and let the surface of the mercury in
AB and a horizontal plane touching the surface of the mercury
in BD meet PC in M and C respectively. Then, if the ratio
of the spaces 4P, AM successively occupied by the air be
measured, which may be done by weighing the quantities of
mercury they respectively contain, and if A be the altitude of
the mercury in the barometer at the time of making the expe-
riment, it will be found that

h+ MC vol. AP
h vol. AM’

But if I1, M be the pressures of the air in 4B when occu-
pying the spaces AP, AM, and o the density of the mercury,

I1 = pressure of exterior air=goh, M =goh +go. MC;
. M vol.4P
T T vol.AM®

Next, let a glass tube 4BD (fig. 19) closed at 4 and
having the branches 4B, BD parallel and nearly equal, be

" placed so that PC, the axis of 4B, may be vertical. Pour

mercury into BD, withdraw any portion of the air in 4B,
and add mercury till the surfaces of the mercury in DB, BA
stand at the same height, the latter meeting PC in P. With-
draw a portion of the mercury in BD, and let the surface of
the mercury in 4B, and a horizontal plane touching the sur-
face of the mercury in BD, meet PC in M and C respectively.
Then, as in the former case, if the spaces 4P, AM successively
occupied by the air be measured, as well as 4 and MC, it will
be found that

h—-MC vol. AP
h vol.AM’
But if TI, M be the pressures of the air in 4B when
occupying the spaces AP, AM,
MN=goh, M=goh-go.MC;
M vol 4P
T T vol4M
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Hence the pressure of air at a given temperature varies
inversely as the space it occupies, when the pressure is less
than that of the atmosphere, as well as when it is greater.

This law was first discovered by Boyle in 1662.

32. The pressure of atmospheric air at a given tempe-
rature varies inversely as the space it occupies, and therefore
directly as its density. Hence, if p, be the density of atmo-
spheric air at 0°C under the pressure IT, IT = up,, where u is
constant.

If A be the altitude of the column of mercury supported
by the pressure of the air, ¢ its density, and g the force of
gravity, Il =goh, therefore goh = up,.

The experiments of MM. Biot and Arago, combined with
those of MM. Dumas and Boussingault (Ann. de Chimie,
Nov. 1841,) shew that

70 o 10468,6,

Po
o, being the density of mercury at 0° and p, the density of
dry atmospheric air at 0°C, under the pressure of a column of

mercury at 0% 0,76 metres, or 29,9218 inches high, at the mean
level of the sea in latitude 45°

At the level of the sea in lat. 45° g = 32. 17287 feet;

<o o/ 1= 916,188 feet.

33. The expansion of air and of all other permanently
gaseous fluids between the temperatures 0° and 100" C, under
a constant pressure, is equal to 0,8665 of its volume at 0° ac-
cording to the observations of Rudberg and Regnault (Ann.
de Chimie, Jan. 1842) and the increment of its volume is
nearly proportional to its temperature above 0°, as indicated
by a mercurial thermometer. Therefore, if %,, %, be the spaces
occupied by a given mass of air, pj, p, its densities, at the tem-
peratures 0", T, under a constant pressure,

u, = {1 + (0,003665) T} u,

— ————— . —
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Since the quantity of the air is constant,
Potho = Pty 3 - py= {1 + (0,003665) T} p,.
Hence
M =pup, =u {1+ (0,008665) T} p,.
At the level of the sea in lat. A
&g = 32,17287(1 - 0,00256 cos 2)) feet
4/ 1n=916°118 feet.

Hence the density of mercury at 0° divided by the density of
atmospheric air at T under the pressure of a column of mercury
at 0", h inches high, at the level of the sea in lat. A

818089 1 + 0,008665 T
= o .
N h 1 —0,00256 cos 2\

34. The quantity of a gas is frequently measured by its
volume at a given temperature and under a given pressure.

Let u’' be the volume of a gas at the temperature T’ under
the pressure I1'; u its volume at the standard temperature T
under the standard pressure II. The volumes of the gas %
the temperature 0°, under the pressures IT', II will be

74 u
- and
14+ ET 1+ ET

respectively, where E = 0,008665, the expansion of air for one
degree of temperature (38). But the pressure of air at a given
temperature varies inversely as the space it occupies (81),
therefore

I «1+ET

AT

" u1+ET

v II' 1+ET

"o II14ET
35. When a given mass of air is compressed or permitted
to dilate, it is found that its temperature is increased in the
former case and diminished in the latter. Since the density
and temperature are both increased or both diminished, it
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follows that the alteration of pressure corresponding to a given
change of density is greater than if the temperature remained

_invariable.

Let II, T, p be the pressure, temperature, and density
of a given mass of air; II', T' its pressure and temperature
after its density has been suddenly changed to p’, where p’

does not differ much from p; w(l - &,) the increase of tempe-
p

rature due to the sudden change of density from pto p'; E
the expansion of air for one degree of temperature. Then

Nepp(l+ET) -~
M=ug/Q+ET) { — 7"
=pp {1+ ET+ E(T - T)}

= up'{l + ET +Ew(l —E,-)}
P

=u {(1+ET)p +Ew(p’ - p)};
n-n Ew \p'-p -
N

14+ ET P

It appears from experiment that Ew is proportional to
1 + ET, or that

Ew
1+ ET

is the same for all values of T. Let this quantity be denoted
by K, and let p'=p + dp. The change of pressure from I
to I1' is due partly to the change of density and partly to the
change of temperature which is caused by the change of density.
Hence the pressure in passing from I1to I1’ is a function of the
density only. Therefore II' =1 + d,[18p ultimately. Hence

1 1
=d,Jl1=K-;
P

o
.~ log, Tl = K log.p + C,
log I =K log,p' + C;

n e
.~ log, = = xlog,- ;
n gp
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L (p’)"
oe n = ; .
g 1sET
n p ‘1+ET’
L 1+ET (B’)’»‘".
1+ ET \p

It will be seen presently that the probable value of K is
1,41754.

If, in making the first experiment described in (1), the
mercury be suddenly poured into the tube DB, the temperature
of the air in 4B (fig. 18) will be increased ; and if the altitude
CM be observed before the air in 4B has cooled down to its
original temperature, the pressure will appear to vary in a
higher inverse ratio than that of the first power of the space
occupied by the air. A similar observation applies to the
second experiment.

36. The specific heats of two different bodies, or of the
same body in different states, are proportional to the quantity
of heat required to produce a given change of temperature in
them, or they are inversely proportional to the change of tem-
perature produced in equal masses of the bodies by equal
quantities of heat.

Let T be the temperature, p' the density of a mass of
air under a given pressure I1; let the heat ¢ change the tem-
perature to T, and the density to p, the pressure remaining
unchanged. Therefore

p 1+ET
p 1+ET

Let the air be now compressed till it acquires its original
density p'; the heat evolved will be

- (1 _fl) _ Ew(T—T').
P 1+ ET

Therefore upon the whole the temperature of the air has been
increased by the quantity

(T - T’){l +

1+£T}'
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This is the quantity by which the application of the heat ¢
has increased the temperature of the air, its volume remaining
constant. Under a constant pressure the heat g increased the
temperature of the air by the quantity T —~1'. Hence

Ew specific heat of air (press. const.)
1+ET  specific heat of air (vol. const.)

87. Let two vessels the capacities of which are % and v
be filled with the gases (4) and (B) at the same temperature T
and under the same pressure I, and open a communication
between the two vessels: in the course of a short time, pro-
vided the gases be not such as act chemically upon each other,
it will be found that they are uniformly diffused through both

vessels, and that the pressure at the temperature T remains
unaltered.

A volume u of a gas (4) under the pressure M is mixed
with a volume v of a gas (B) under the pressure II, to find w,
the volume of the mixture, under the pressure P, the tempera-
ture remaining unchanged throughout.

Under the pressure P the volumes of (4), (B) will be.

Mu espectivel

P % p v respectively.

But if the gases after being mixed occupy a space equal to
the sum of their volumes before they were mixed, their pressure

will still be P. Therefore under the pressure P their volume
(w) will be

I
Fu-;.Fv, oo Pw=Mu+I'lv.

fu=v=mw, P=M+IL

38. If a small quantity of any liquid capable of affording
vapour be introduced into a vessel from which the air has
been withdrawn, the vessel will be almost instantly filled with
vapour, the pressure and density of which are found to depend
only on its temperature, as long as the whole of the liquid is
not converted into vapour. If the space in which the vapour

4
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exists be increased, a fresh portion of the liquid will take the
form of vapour; and if it be diminished, a portion of the
vapour will return to a liquid state; but the pressure and
density will remain the same in either case, provided the
temperature undergoes no change. If the temperature be
increased, a fresh portion of the liquid will be converted into
vapour, and the pressure and density will be increased. If the
temperature be diminished, a portion of the vapour will return
to the state of a liquid, and the density and pressure of the
remainder will be diminished. If the space be increased suffi-
ciently, the whole of the liquid will assume the form of vapour.
Under these circumstances the relation between the pressure,
temperature, and density of vapour, is very nearly the same as
for air.

The pressures exerted by the vapours of various fluids in
contact with the fluids from which they are produced have been
determined experimentally, and empirical formule have been
constructed, which, for a certain range of temperature, express
the results of these experiments with considerable accuracy.
Yet hitherto no law has been discovered by which the pressure
at any assignable temperature can be determined. Formule
exhibiting the pressure of the vapour of water in contact with
water, at any temperature between certain limits, will be given
at the end of the treatise. ’

It appears probable, from the experiments of Mr Faraday,
that every gas may be made to assume the form of a liquid by

" diminishing its volume. When the condensation of a gas is

carried on nearly to the point at which it begins to liquefy,
the ratio of its pressure to its density at a given temperature is
no longer constant. The value of this ratio for dry atmospheric
air does not however perceptibly change under the pressure of

. a column of mercury nearly ninety feet high. It has also been

shewn that the expansibility of gases and vapours is not with-
out limits.

39. When the liquid is introduced into a vessel contain-
ing air, precisely the same effects are produced, except that the
vapour is formed slowly. The quantity of liquid finally con-
verted into vapour is the same as if the vessel contained no air.
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Let M be the pressure of the air before the introduction

of the liquid, Y the pressure which the same quantity of vapour’

would exert if the vessel contained no air. The volumes of
the air, of the vapour, and of the mixture of air and vapour

are the same, therefore (37) the pressure of the mixture of air

and vapour = M + Y.

40. If a solid surrounded by a mixture of air and vapour
be cooled down below the temperature corresponding to the
density of the vapour in the mixture, the stratum of air in
immediate contact with the solid will be cooled, and the excess
of vapour contained in it will be deposited upon the surface of
the solid in the form of dew, which may be made to disappear
by heating the solid above the temperature corresponding to the
density of the vapour.

The lowest temperature at which the whole of the vapour
contained in any mixture of air and vapour is capable of
remaining in an elastic state is called the dew-point. It may
be determined practically in the following manner: cool a
vessel of glass or polished metal, and observe its temperature
when dew begins to be deposited upon it; suffer it to grow
warm, and observe the temperature at which the dew dis-
appears. These two temperatures are one less and the other
greater than the dew-point, and they differ very little from
each other; their mean may therefore be considered as.the

dew-point.

The observation of the dew-point enables us to determine
the pressure of the vapour contained in any mixture of air and
vapour. For if Y be the pressure of the vapour, ¢ the tem-
perature, T the dew-point, Y, the pressure of vapour corre-
sponding to the temperature 7, is known by experiment. At
temperatures above T the relation between the pressure, den-
sity, and temperature of the vapour, is the same as for air;

Y Y,
" 14+et l1+er

The pressure of the vapouf of water existing in the atmo-
sphere may be deduced from the dew-point by means of the
equation given above. It may also be obtained by observing
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the temperature of a thermometer the bulb of which is covered
with muslin and kept constantly moist. According to August,
if ¢ be the temperature of the air, # the temperature of the wet
thermometer, Y the pressure of the vapour, Y’ the pressure of
vapour corresponding to the temperature ¢',

11
28,776

Y = Y’ - 0,02239 (£ - ¢)

41. To compare the density of a mixture of air and vapour
with the density of dry air at the same temperature and under
the same pressure.

Let IT be the pressure of the mixture of air and vapour,
t its temperature, Y the pressure of the vapour, and therefore
I1 - Y the pressure of the air alone, m the ratio of the specific
gravity of the vapour to that of the air at the same tempera-
ture and pressure, p the density of dry air at # under the
pressure [I. The density of air at # under the pressure I1 - Y
will be H—I;Y- p- The density -of vapour at # under the

Y

pressure Y will be ™

Hence the mass of a volume V of the mixture of air and

n

vapour is equal to a mass V p of dry air together with

a mass V%mp of vapour. But the mass of a volume ¥ of
dry air at £ under the pressure I is equal to Vp;
. density moist air
"7 | density dry air

--Il-](ﬂ—Y+mY)=l-(l-m)%.

According to Gay Lussac, (density vapour) -~ (density
air) = 0,625, therefore 1 — m = 0,875.
Hence, at the same temperature and under the same pressure,
density moist air 1 - 0.375 Y
density dry air T

where I1 is the pressure of the moist air, and Y the pressure of
the vapour it contains.

. ————— e ———— —
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42, Having given the volume of a mixture of air and
vapour, to find the volume which the air alone would occupy
under the same pressure and at the same temperature.

Let u be the volume of the mixture, %’ the volume of the
air alone under the same pressure, II its pressure, Y the pres-

‘'sure of the vapour ; therefore IT — Y is the pressure which the

air would exert if the vapour were removed. But the space
occupied by air is inversely proportional to the pressure, there-
fore, under the pressure TI the volume of the air alone

n-y

= ——1U.

n

43. It appears from reasoning similar to that employed
in.(8) that when an elastic fluid of uniform temperature, acted
on by gravity, is at rest, its pressure, and therefore its density,
is the same at all points in the same horizontal plane. This is
also true when the temperature at any point depends only on
the distance of the point from a given horizontal plane.

44. To find the difference of the altitudes of two stations
by means of the barometer.

Let H, II, K be the pressures of the air at the points H,
P, K in the vertical HPK (fig. 20); S the temperature at H,
T the temperature at X'; Q a point very near to P; HK = %,

H#MP<=2, PQ=dz; then II + d,T18z will ultimately be the

pressure at Q, g the force of gravity, E the expansion of air
for one degree of heat under a constant pressure. The tempe-
rature of the air decreases slowly as we ascend ; it may however
be supposed uniform between H and K, and equal to the
mean temperature } (§ + T) without causing any considerable
error. The density of the air at P

I 1
pl1+3EGB+T)
But pressure at P = g (density at P) PQ + pressure at Q (9), or

o
H=gn >

_— 4+ 1 +d,11éz;
,‘1+422(s+'r)+ + 4, 0de

Ny
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1 £ 1
._d -——._—__..;
I -1 pl+3E(S+T)
g &

ol ec-8—_°% .
og Il =C pl1+4E(S+T)

log kK=Cc-£ % ___,
8 ¢ ul+4E(S+T)

@ =2, and [1=H whenz =0,

log.H = C, for II = K when

H g x -
colog— =2 ———————,
8K r1+3E(S+T)

Let & be the altitude, s the temperature of the mercury in
the barometer at H; k the altitude, ¢ the temperature of the
mercury at any point in a horizontal plane passing through X;
¢ the expansion of mercury for one degree of temperature; then

log H—log 10.log H
e K = 108.10-l0gi 1

= log,10.[log,ch — log,k + log,, {1 — e (s — 2)} ]

e(s—-t¢
= log, 10 {log,oh = logok — %&NT)} nearly.
45. If X be the latitude of the place of observation, and
[ the force of gravity in lat. 45°,

g =J (1 = 0,00256 cos 2)\).
Hence
n 1+3E(S+T)

z = log,10 =
Be f 1 —0,00256 cos 2A

{log.oh - logok - els— t)} .

log. 10
By comparing a number of corresponding values of z, 4,
k, ... it has been found that

log, 10.; = 60345 feet, 60345.0,00256 = 155,

[4
603454 E = 120, = = 0,000078,
og.

€
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the temperatures being expressed in degrees of the centigrade
thermometer.

Hence, if s be the number of feet contained in HK, ex-
panding and neglecting products and powers of the small terms
after the first,

s = {60845 + 120 (5 + T) + 155 cos 2\ }
x {logih ~ log,k — 0,000078 (s - £)}.

46. When the difference of the altitudes of the stations is
large, it becomes necessary to take into account the variation
of gravity in the same vertical. Let 7 be the distance of H
from the center of the earth; g’ the force of gravity at P, g the
force of gravity at H. It has been found that when P is on
the surface of the ground, and we take into account the attrac-
tion of the portion of the earth which is elevated above the level
of H,

g=¢ (l -;‘-;) nearly ;

5.2’
1 g 1 oy
o=dl=-&8 — ~ ____¢&
m* ul1+3E(S+T) #1+‘;E(S+T)
5.2'

g7
°-l ,ﬂ-C———,—.
°8 rl+3E(S+T)

Ly

e-3Z

)| .H-C, l ‘!\ C—-——1——#—-
8 o8 nl+3E(S+T)

z(l—“f.

o H ¢ rr) g % 1

S B T UTHIEG+T) A1+ IEG+T
)y

P
+ ¢ —nearly.
r

H ghitet 1 hil+et h I
Bt—-_- - - = - - - l_ .
. K gkises sSk1+es k{l e(s-t) + ‘r}'

H 1
*. log, r= log,10 [log,oh - logk - og.10 {e (8-28)-3 ;}];
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- %z =log,10

u 14+3E(S+T) ( _5)
f 1 —0,00256 cos 2\ tr

1 s
x [log,oh - log,ok — Tog.10 {e (-t)-7 ;}]
47. If
2’ = 64000 §log,k — log,ok — 0,000078 (s — t)},

¥’ may be substituted for ¢ in the terms having small coeffi-
cients ;

1, 64000
= 0,00166
log.10 ¢ 0s ’
1 .2
<. logoh = log,ok — 0,000078 (8 — t) + m T

= 1,00166 {log;oh — logyk — 0,000078 (s — #)}.

By substituting observed values of x, &, k in the equation
betweén =, h, k, it has been found that

64000
1,0016610g,1o§- 60258, 602583 E =120, 60258. 5 —— = 115.

‘Whence
= = §60258 + 120 (S + T) + 155 cos 2\ + 115 (log h — log k)}
x {logh ~log,,k — 0,000078 (s ~ £)}.

The constants in (45) (47) are adapted to the mixture of
air and watery vapour constituting the atmosphere in its ordi-
nary state. The vapour of water is lighter than dry air, and
the quantity of vapour contained in a given quantity of atmo-
spheric air increases with the temperature. Hence x and E are
larger than if the atmosphere consisted of perfectly dry air.

48. When the pressure of the vapour contained in the
atmosphere at the upper and lower stations is known from
observations of the dew-point, or of the temperature of a
thermometer with a wet bulb, the difference of the altitudes of
the stations may be found with greater accuracy.

— — e e e O . e e e
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Let w be the mean of the pressures of the vapour divided
by the mean of the atmospheric pressures at the upper and
lower stations. Then, at the same temperature and under
the same pressure,

density atmospheric air
density dry air

=1 - 0,375w nearly (41.);
I 1-0,375w
u 1+3EGB+T)

Proceeding as in (44.) with this value of the density,
we obtain

.. density atmospheric air at P =

p 1+3E(8+T)

®
g =log,10. -, —————= (l + -:.-)
g 1-0875w r

x [log,oh - log,k - logl, m {e (s -0t -3. ;}] .
log,10 = 2,3025851, E = 0,008665.
4/ (n) = 916,188 l
& = 82,17287 (1 — 0,00256 cos 2)) ; feet.
r = 20888761 I
Whence v =
§60076 + 22529 +110(8+T) +155 cos2 X + 115(log,ok —logyok) }
x {logoh — log,ok — 0,000078 (s - £) }.




SECTION 1IV.

ON THE EQUILIBRIUM OF FLUIDS ACTED ON BY ANY FORCES.

ArT. 49. To find the pressure at any point in a mass of
fluid at rest acted on by any forces.

Let PQ (fig. 21.) be the edge of a very small prism of fluid
in the interior of a mass of fluid at rest, R the accelerating
force at P, § the resolved part of R in the direction PQ. Let
the prism become solid; then, since .§'.(mass prism), and the
pressures on its ends are the only forces that act upon it in
a direction parallel to PQ, they must be in equilibrium;

.. press. on the end Q — press. on the end P =.§.(mass prism).

Let z,y, 8; o +d2, y+ Oy, %+ oz be the co-ordinates
of P, Q referred to rectangular axes Oz, Oy, Oz. Construct
a parallelopiped LMN, of which PQ is the diagonal, having its
edges PL, PM, PN parallel to Oz, Oy, Os respectively.
Let X,. Y, Z be the components of R resolved parallel to
Oz, Oy, O=; « thearea of the base of the prism; p the density
of the fluid; p the pressure at P, and therefore, ultimately,
p+dp.oz +dp.8y+d.p.dx, the pressure at Q. If the
sides of the base of the prism be very small compared with its
length, pressure on the end Q — pressure on the end P

=x(d;p.dz+d,p.dy +d,p.d%).
But §=X.cosQPL + Y.cosQPM + Z.cos QPN ;
and the mass of the prism = px-PQ;
<. §.(mass prism)
= px.PQ.(Xcos QPL + Y cos QPM + Z cos QPN)
=px(X.0x+Y.3y+ Z.6);

N

odp.ox+dyp.oy+d,p.dz=p(X.6x+Y.0y+Z.0z).

. e
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da, 3y, 3x are independent of each other; therefore
dp=pX, dp=pY, dp=pZ;
if, then, we can find a quantity p, such that
dp=pX, dp=p¥ dp=pZ,

P, taken between the proper limits, is the pressure at P.

50. When the fluid is elastic p = Bps

s B i
o’e ;.d,p-X’ ; yp_- Y, ; .P‘Z’

therefore p is a quantity such that
nd,log,p = X, ud/log,p=Y, udlogp=2,
and if  be a quantity such that
du=X, du=Y, du=2Z,

p=Ce

51. dp=pX, dyp=pY, dp=pZ;
d.d,p = d,d,p, d,d,p=dd,p, d,dp=ddp;
o d,(pY) = d.v(PZ),
d,(p2) = d. (pX),
dy(pX) = d, (pY).

If we perform the differentiations, and multiply the first
equation by X, the second by ¥, and the third by Z, and add,
we obtain :

Xd,Y-d,2)+¥(d,Z-dX)+Z(d,X-dF)=0 |,

This equation expresses the relation that must exist between the
forces X, Y, Z, in order that the equilibrium may be possible.

When the density is constant,
X =d,¥, dX=d,2Z, dY=dZ.

[ . —a - . . e —————— e
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52. If ¢ be the pressure at any point P in the fluid, p=c,
in which % is an implicit function of x and y, is the equation
to the surface of equal pressure passing through P.

The derived equations of p = ¢ are
d(’)p + d(:)p 'dtz = 0, d(’)p + d“)p . d,z = 0,

z, y, = being considered independent of each other in forming
the differential coefficients d,)p, d,p, d,p;

X+ Z.dx=0, Y+ 2Z.dxs=0;
therefore if a, 3, oy be the angles between O 2, Oy, Ox, and the

normal at P, to the surface of equal pressure passing through P, -

{ J¢] cos —
cosa = R’ cos --1-2, Y R’
X Y VA
where R*= X*+ V* + Z®. But B R R

are the cosines of the angles between Oz, Oy, Os, and the
direction in which the force at P acts. Therefore the force at
any point acts in the direction of a normal to the surface of
equal pressure at that point.

The equation to the surface of a fluid is p =0. And
if the fluid be contiguous to another fluid with which it does
not mix, and which exerts a pressure II at the common surface

of the fluids, p = IT will be the equation to the common surface
of the fluids.

53. When p is variable, and a quantity u can be found,
such that X =d,u, Y=dyu, Z=d,u, p must be a function
of u. For )

d.p=pdu, dp=pdu, dp= pd-u,

and these equations cannot be satisfied unless p is a function
of u.

Let p = fu, then d,p=fud,u; .. p=[fu Hence
% and p are functions of p; and when p is constant,  and p
must be constant ; therefore u = c is the equation to a surface
of equal pressure; also p is the same at all points in a surface
of equal pressure.
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Hence when an elastic fluid of variable temperature is at
rest, the temperature is the same at all points in a surface of
equal pressure.

54. The conditions d, X =d,Y, d, X =d,Z, d,Z=4d,Y,
are satisfied whenever the forces tend to fixed centers, and the
intensity of each force at any point P, is a function of the dis-
tance of P from the center to which the force tends.

- For if a, b, ¢ be the co-ordinates of the center to which one
of the forces tends, r its distance from P, ¢r the intensity of
the force at P,

X-}:(¢r

T -a
=)

, Y=3S (¢ry+b) , Z=% (¢r”:c) \
rm(2-a)+(y-b'+ (z-c);

v d X = 2{(d,q‘>r - ;4;7) 2-2y- b}.

r r

We should have obtained the same expression for d.Y, there-
fore d, X = d,Y ; in like manner d,X =d,Z, and d,Z = d,Y.

55. u =2 (f,¢r), retaining the notation of (54). For if
u=2(f¢r),

& —-a

r

d,u-E(tpr. ) = X,

dyu=3 (¢r.y : b) =Y,

\

) =Z

& ~-=C

du=73 (¢r

56. Each particle of a fluid attracts with a force .which
vanishes when the distance of the particle from the attracted

point is finite; to find the pressure at any point in the interior
of the fluid.

Let the plane 20y (fig. 22) be a tangent to the surface of
the fluid touching it in O, O perpendicular to *Oy; »0x,
yO=, the planes of greatest and least curvature. Through

.
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any point M in the surface of the fluid, draw NMQ parallel to
Oz, meeting Oy in N.

Let R, s be the radii of curvature of the surface of the
fluid in the planes #Oz, yOz; NOz =0, NO = p, NM = x,
OP=7, MP=u, NQ==x, PQ=u; ¢u the attraction of a
portion of the fluid the volume of which is unity on a point at
the distance u, F the attraction of the fluid on P, which mani-
festly acts in the direction O=.

The equation to the surface of the fluid is

. {(co;O)’ . (sil;e)’} ,

and ul=p'+ (z,— 1)}, u'=p'+ (x-7);

“ u,.d,u=g2—r, and u’=p'+ 9~ 27x nearly;

*——I, '—j
‘. ud’unp-rdpz-p{l - (&;0—4-%,)};

e = 'Is
Sopm udpu{l +r (&:_ + smse )} nearly.

V-I"Z Z'le;r du,,

X -7
© ¢u1= f':¢uld’lul= j:l¢ul ’

/

k.,

whenz, =@, ¥ =wo; whensg=z u=u;
I,. z’;rgpul-: II-¢ul-wu.
Lpmu= j;ud,u{l +r (@9—, +sin_se’)}wu,
-{l 7 (@4-““—02)]];%7;4;
R s /f

when p=o, u=-e; whenp=0, u=r;
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7 .0
p'n’u-{l-f-r [ .U

-{1+r(m]’+§?‘—zl')}\pr.

R

» « R

(o=, @]ﬂ’)}

o ER R e 31

. V-Q-;r{l +£ (% +1§)}\[1r.

Since the attraction of the fluid is insensible at sensible
distances, wu decreases with extreme rapidity as u increases,
and vanishes when the value of u becomes sensible. The same
remark applies to \,r.

If the density of the fluid = D, the pressure at P arising
from the attraction of the fluid

= D."/“'V- D{Q.,r‘:/'\rr+1r (% +%)}f[',.\[;r.
Letﬂ;:ry.\]zr-K, ij.r\]:rsﬂ;

then, since the force becomes insensible at sensible distances
from the surface of the fluid, the pressure at P, arising from the
attraction of the fluid, remains constant for all sensible values

0,.r 0 Ar
of OP; .. erf yr and Q'n'f ryr become K and H, as

soon as r becomes sensible; therefore when OP is finite, the
pressure at P, produced by the attraction of the fluid,

1 1
-D{E+3H(~ -) .
{ td (R *s }
When the surface of the fluid is a plane, l—i =0, :-)-o,
and the pressure = D.K.

When the surface of the fluid is concave, R and s become
negative.

—— e e e

———
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Since /7 vanishes when r becomes sensible, ry 7 is much
less than v 7, therefore 3 H (:; + é) is much less than X, or,

the attraction of a fluid on a particle of fluid in its surface, is
nearly independent of the curvature of its surface.

57. Let ACD (fig. 28) be a narrow cylindrical tube,
partly filled with a fluid acted on by no forces except its own
attraction, and the attraction of the tube. Let m T be the
attraction of the matter of which the tube is made on a particle
of fluid in its surface, n T" the attraction of the fluid on a par-
ticle of fluid in its surface, the surface in which the particle
is placed being either a plane or a surface of continuous
curvature.

(1) Let the surface of the fluid in the tube be a plane
ABC perpendicular to the axis of the tube. Draw 4D
parallel to the axis of the tube, AC a diameter of the circle
ABC, and AG bisecting the angle CAD. The attraction of
the tube on a particle of the fluid at 4 is equal to m T', and it
acts in the direction C4. Let 73860 be the attraction of a
wedge of fluid having a very small angle 36 on a particle of
fluid in its edge; ¢ the attraction of a wedge of fluid having
an angle 20 on a particle in its edge. It is easily seen that
the attraction of a wedge having an angle 260 + 2860 will be
t+2780.cos 6. Hence dyt =27 cosf; .. t=27sinf. By
making 6 = 3« we obtain the attraction of the fluid on a
particle of fluid in its surface. But this is n T, therefore
27 =nT.CAD = 4 ; therefore the attraction of the fluid
CBAD on a particle of the fluid at 4 is equal to n T.sin;}q.-;
and the resolved parts of this attraction in the directions 4D,
AC are each equal to n T (sindx)?, or 3nT. But the whole
attraction on a particle of the fluid at A, must be perpendicular
to the surface of the fluid at 4, or in the direction 4D, there-
fore we must have ynT =mT, or n = 2m.

(2) Let the surface of the fluid in the tube be a concave
hemisphere 4EC. Complete the sphere 4ECF. The at-
traction on a particle of the fluid at 4 will not be sensibly
altered if we suppose the upper part of the-tube to be filled
with fluid, leaving the spherical space 4FCE vacant. But
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in order that the fluid surrounding AFCE may be in equi-
librium, the attraction on each particle in its surface must be
the same, and perpendicular to the surface, therefore the
attraction of the cylinder on a particle of the fluid at 4 must
be equal to the attraction of the fluid on a particle of the fluid
in its surface, or n T =m 7T, ... n = m.

When n is greater than m, it is probable that a layer of
fluid adheres to the inner surface of the solid tube. The
attraction of this fluid tube on a point in its surface is n 7,
and consequently the surface of the fluid contained in it is
a concave hemisphere.

(8) Let the surface of the fluid in the tube be a convex
hemisphere AFC. Complete the sphere AFCE. The attrac-
tion on a particle of the fluid at 4 will not be sensibly altered
if we remove the fluid in ' 4ECD, leaving the sphere AFCE.
But in order that the fluid sphere AFCE may be in equi-
librium, the attraction on a particle at 4 must be equal to the
attraction on a particle at any point F in its surface. There-
fore the attraction of the tube on a particle of the fluid at 4
must vanish, or m = 0.

- The surface of water, alcohol, &c. contained in a glass tube
of very small diameter is found to be a concave hemisphere.
The surface of mercury in such a tube is a convex hemisphere.
The surface of mercury which has undergone a change in con-
. sequence of having been boiled for a long time in contact with
atmospheric air, is a plane perpendicular to the axis of the tube.

Tubes such as those mentioned above are called Capillary
Tubes.

58. When the lower extremity of a capillary tube is
immersed in fluid, the surface of the fluid within the tube is
elevated above, or depressed below, the surface of the surround-
ing fluid, according as it is concave or convex. Thus water is
elevated, and mercury depressed in glass tubes. The attrac-
tion pn which this phenomenon depends, is insensible at sensible
distances: for the elevation or depression of the fluid is inde-
pendent of the thickness of the tube; and the ascent of water
in glass tubes is entirely prevented by a thin film of oil.

6 .

. ——— ot
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59. To determine the surface of a fluid contained in a
vertical capillary tube.

Let AC (fig. 24) be the axis of the tube meeting the plane
of the surface of the exterior fluid in C; 4PB a section of the
surface of the fluid, which will manifestly be a surface of revo-
lution, and BDB'D’ a section of the tube made by a plane
through AC; PN parallel to 4C, AN perpendicular to-AC;
DC=a, AC =c, AN =2, PN = y; b the radius of curvature
at 4; R, § the radii of curvature at P in the plane 4PD, and
perpendicular to APD; PEA a canal leading from P to 4.
Now when the fluid in PE4 is at rest, the pressure at 4
produced by the action of gravity and the attraction at P on
the fluid in PEA, must be equal to the pressure at 4 produced
by the attraction at 4 on the fluid in 4EP;

#E-}H(Z+3) +8. PN=K-}8;

Y zdyy o Gy .
CEEYTE T eyt e @yt

.28 @ Thy
. SH._[,ya:-f» 5~ T r (] 1)
In order that the fluid in a canal leading from 4 to a point
in the surface of the exterior fluid, may be in equilibrium, we

2
must have K—{H-I;+g.AC-K; . H=gbc;

zd,y
{l + (d.r.'/)‘:}i '
If a be the angle between a tangent to APB at B and AN, V

the volume of the fluid in the tube elevated above the surface
of the exterior fluid,

R %(cz" +2 j;yz) =

0.6 0 o
f—{ {ca’+2f‘ yz} = asina; and V=vrca*+27r_[yw;
o V=—mxasina.
« depends only on the nature of the fluid, and of the sub-

stance of which the tube is formed. When the fluid is water,
and the tube of glass, V = (0,028444) 7 a, a being expressed in




EQUILIBRIUM OF FLUIDS. 43

linear inches, and V in cubic inches. Also when a is small
compared with ¢, the surface of the fluid is a concave hemi-
sphere, ... V= wa’c + §a’, .. ac + §a® = 0,028444.

If d,y = tan6, and a be very small compared with ¢, fya.'
is small compared with cz*, and

‘H H 2
B — [E— _Ia—-— i -———
cz 2 sin@ (1 + ng;y.z-) 2 sin @ (1 pye Jey)

very nearly.

cz = g sin 6, dyy = f—i—’sin 0, y= g (1 - cos 6) pearly.
_/:ya: = _/; yrdyz = (E)s{i (sina)*~ 3 + 3 (cosa)*} 5

. cacgsma{l‘—-( )[}[sma)’ ‘% + 4 (cos @)*]};

Hsina a - (cos a)
e=2 {l—csina[l_% (sin a)*

z @ } (8) pearly.

60. To determine the surface of a fluid between two
parallel vertical plates.

Let D’APD (fig. 24) be a section of the surface of the
fluid and of the parallel plates, made by a plane perpendicular
to their surfaces ; 4C equidistant from the parallel plates, meet-
ing the surface of the interior fluid in 4, and the plane of the
surface of the exterior fluid in C. Then, the rest of the con-
struction and the notation being the same as in (59),

08 . 1o dy
BV T do
d,
gfy+ — — (4);

T T+ ()i

d,
and H = 2gbc; -'-QTI(M'*'LSI)' _'/

[T+ @y’
. 2& T =i DBADB =Zsna (5)
. H{ca+f.y}-sma, or area = e

When the fluid is water, and the plates of glass, and very
close to each other, B'AB is a semicircle ;
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. area DB'ABD = 2ac + 24 — yra'= 2ac + 7a* nearly,
and ?- 0,023444, .". 2ac + 7' = 0,023444.
If d,y = tan 6, then, when a.z is small,
cw = 2’—2 sin6 (1 - -L‘Ly) very nearly ; and
fg yd,w-(l;{) (sma---}sta)
) (si ma— - — }sin2q)};

2g ca
H sin a . a .
-; e {l—c(sina)“ (sma—;-—i-smﬂa)} (6).

It appears that the elevation of a fluid between two parallel
plates, is nearly half the elevation in a tube the diameter of
which is equal to the distance between the plates.

When a single plate is immersed vertically in a fluid

d:
2 é y = .__Lg_ .
H” {1+ (dy)'}s
This is the differential equation to the elastic curve.

The investigation of the form of the surface of the fluid
when it is depressed, leads to precisely the same equations as
when it is elevated, the sign of y being changed.

If V be the space between the surface of the mercury in a
vertical glass tube and the plane of the surface of the mercury
on the outside, and a the radius of the tube, V = (0,01) ra.

61. To find the tension of a flexible cylindrical vessel
containing fluid.

Let MK, PQ, HL (fig. 25) be equidistant sections of the
cylinder made by planes perpendicular to its axis. Draw PE,
QE normals at the extremities of the small arc PQ; MPH,
KQL perpendicular to PEQ; and let p be the pressure of the
fluid at P, ¢t. M H the tension of MH or KL, r the radius of
curvature of PQ. Now AL is kept at rest by the pressure of
the fluid, and the tensions of its edges; the ten}sio_ns of MH,

- ¢ ———— e —n e - e ..
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KL, and the pressure of the fluid, are the only forces that act
in the plane PEQ; the tensions act perpendicular to PE, QE
respectively, and the pressure of the fluid acts perpendicular to
PQ; therefore, ultimately,

" EP__ tMH ¢
PQ " p.(area ML) p.PQ’

oo t=pr.

62. To find the tension of a vessel of any form containing
fluid.

Let PCP', QCQ’ (fig. 26) be the normal sections of least and
greatest curvature of the vessel at C; P'C = PC, QC= QC;
PE, PE, QF, Q' F normals at the extremities of the small arcs
PCP, QCQ'; MPK, HPL sections of the vessel made by
planes perpendicular to PEP'; MQH, KQL sections of the
vessel made by planes perpendicular to QFQ’. Let p be the
pressure of the fluid at C, ¢.QQ’ the tension of HL or MK,
v.PP the tension of MH or KL ; r, 8 the radii of curvature of
PCP, QCQ'. ML is kept at rest by the pressure of the fluid,
and the tensions of its edges ; therefore the resultant of the ten-
sions must be equal and opposite to the pressure of the fluid.
The resultant of the tensions of MK, HL

= 2¢.QQ'.sin PEC = ;t.PP’.QQ'.
The resultant of the tensions of MH, KL
= 20. PP.sin QFC = E.PP'.QQ'.

The resultants of the tensions act in the direction CE ; the
pressure of the fluid = p. PP'.QQ', and it acts in the direction
EC;

t v

o= - -,
P=i+;

When the tensions are the same in eévery direction, or v=¢,

t(l 1
p=tie3)-

When the vessel is immersed in fluid, p is the difference of
the pressures of the interior and exterior fluids.

——

[ R



SECTION V.

ON THE MOTION OF FLUIDS.

Art. 63. WHEN an incompressible fluid flows through
a tube the velocities of the fluid at any two points, are in-
versely proportional to the areas of the perpendicular sections
of the tube at those points; supposing the tube to continue
always full, and the velocities at all points in the same section
to be equal to one another, and perpendicular to the section.

For equal volumes of fluid must pass through each section
in the same time; and if uw, v be the velocities at the two
sections ; H, K the areas of the sections; uH¢?, vK¢ will be the
volumes of the fluid that passes through the two sections in the
small time ¢; and these are equal; .. uH = vK;

v K

v H

64. When a fluid is in motion and acted on by any forces,
to dgtermine the effective accelerating force in the direction of
its motion at any point.

Draw the curve APQR (fig. 27) so that a tangent to it at
any point may be in the direction of the motion of the fluid at
that point. The motion of the fluid will not be altered if we
suppose a portion of it, of the form of a very small cylinder
having PQ for its axis, to be enclosed in a perfectly flexible
and extensible envelope without weight.

Let p be the pressure of the fluid at P, .§' the accelerating
force at P resolved in the direction of a tangent to APR at P,
4P =s; then p + d,p. PQ will ultimately be the pressure at Q ;
and if p be the density of the fluid at P, « the area of the base -
of the cylinder PQ; the mass of PQ = p«.PQ, and the moving
force on PQ in the direction PQ
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= §. (mass PQ) + pressure on the end P — pressure on the end Q
= Spx.PQ - xd,p.PQ;
therefore the effective accelerating force on the fluid at P in the
direction PQ
-8 - 'l' +P-
P

65. To find the relation between the pressure and the
velocity at P, when the velocity at any point is independent of
the time. )

Let v be the velocity at P, then vd,v = the effective
accelerating force at P in the direction PQ;
o vdo=S - ]—d,p.
. P

‘When the fluid is non-elastic

1

o'+ -p=[S.
P
. When the fluid is elastic, p = up; .. vd,v = § —Sd,p;

<. 3o+ ulog,p = [S.
JiS =4 V*+ C, where V is the velocity acquired by a point

acted on by the same forces as the fluid, in moving from 4 to
P in a tube AP. '

If the fluid be acted on by gravity only, and if = be the
depth of P below a given horizontal plane, and + the angle
which PQ makes with a vertical through P, § = gcosy. But
cosy = d,%, therefore § = gd,z, [S=gsz + C; hence, when
the fluid is non-elastic,

o'+ :—)p-:gs +C;
and when the fluid is elastic
3v*+ plog,p =gz + C.

66. To find the relation between the pressure and the
velocity at P, when the velocity depends upon the time as well
as the position of P.
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Let v be the velocity at P at the time ¢, PR the space
described by a particle of the fluid in the very small time ¢,
therefore PR = vd¢, v + dv the velocity at R. v is a function
of s and ¢;

<. 8v = d,v.8¢ + d,v.v8¢, ultimately.

But $o = (§ - :-’ d,p) 8¢, ultimately ;

d,v+ml,v-S—1 . D-
v P

67. Equation of continuity. Let PQ (fig. 27%) be the
axis of the cylinder of fluid at the time ¢, P'Q’ its axis at the
time ¢ + 8¢; v the velocity of P, therefore v + d,v.PQ will be
the velocity of Q. We have

PP = vdt, QQ'= (v +d,v.PQ) ¢,
PQ=PQ+QQ - PP'=(1 +d,03¢) PQ.
Let «, «' be the bases of the cylinders PQ, P'Q'; p, p' the
densities at P, P’. Then
XK'=« + dix.0¢ + d,x.03¢,
p'- p+ d,pst + d,p.o3l.
But mass PQ = mass P'Q’;
< px.PQ=p'x.PQ.
Whence, substituting the values of p, ¥, P'Q’ found above,
and neglecting the powers of &2,
0 =d, (xp) + d,(xpv).

x is a function of s and ¢ depending upon the directions of
the motion of the fluid immediately surrounding P. 'Thus
when the motion of the fluid about P is in parallel lines, « is
constant. When the motion of the fluid at any instant is in
straight lines which ultimately intersect in a point at the dis-
tance s — a from P, x will be proportional to (s — a)* or (a — s)*
according as the motion is from or towards the point of inter-
section. The most general case is that in which the fluid
moves in straight lines, which, like normals drawn from the
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boundary of a small portion of a curve surface, ultimately
intersect in two lines perpendicular to each other in different
planes at the distances s — a, 8§ — b from P. « will be propor-
tional to (s — @) (¢ — b) when the fluid moves from both lines,
and to (a — &) (b — ¢) when it moves towards both lines; it
will be proportional to (s — a) (b —s) when the fluid moves
from the former line towards the latter.

68. When p is constant, the equations obtained in (66)
and (67) serve to determine p and v. When p is a function
of p, we must substitute for p its value in‘terms of p in the
equation of (66). From the equation thus obtained and the
equation of continuity p and v are then to be found.

’

69. To find the velocity with which an incompressible
fluid acted on by gravity issues through an indefinitely small
orifice in the vessel containing it. Let X (fig. 28) be the orifice.
Draw KH vertical meeting the plane of the surface of the fluid
in H. Let KH = h; u the velocity of the fluid at X; p, v the
pressure and velocity at any point P in the fluid, x the depth
of P below the surface of the fluid; II the pressure of the
atmosphere. Then since the orifice is indefinitely small, the
velocity at any point is very nearly independent of the time;

.. (65)
&v”+%p-gz+€. ‘

At the surface of the fluid & =0, p =TI, and v = 0; (for (64)
velocity at the surface : « = area orifice : area surface, and the
area of the orifice vanishes compared with the area of the -
surface of the fluid, therefore the velocity at the surface = 0.)

l .
;n =C. At K, x=h, p=TI, since at the orifice the fluid
is in contact with the atmosphere, v = u;

1
S dut+-Te=gh+C;
P

o dutmgh .
Or, the velocity of the issuing fluid is equal to the velocity
acquired by a heavy body in falling down HK.

-

{
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If M be the pressure of the fluid at any point in a hori-

zontal plane meeting X H in H, TI the pressure of the atmosphere
at K; .

IMac, and Jut+-Tl=gh+ C;
P P
- %u’:gh+l(M—ﬂ).
P

When the fluid issues through an orifice in a thin plate, it
does not acquire its greatest velocity till it reaches a point at
a small distance from the orifice. This part of the stream is
called the ¢ vena contracta,” on account of the contraction of
the stream resulting from its increased velocity. The area of
a section ofsthe ¢ vena contracta™ is equal to about § of the area
of the orifice.

70. Let KT be the direction of the issuing fluid; HT
the intersection of the plane HKT and the plane of the surface
of the fluid; K« parallel to HT'; TKxz =qa. Then each drop
of the issuing stream being projected in the direction KT with
the velocity acquired by a heavy body in falling down HK, and
being acted on by gravity, will describe a parabola having HT

for its directrix.

The equation to the curve described by the issuing stream is
y==x.tana - £ (secant @)?: or, y=x.tana - = (secant a)®.
2u? ’ 4h

The velocity of the issuing fluid may be deduced from
observed values of the angle TKx, and of the range of the
stream on a horizontal plane at a given depth below the orifice.
The value of the velocity determined in this manner is found
to coincide very accurately with its theoretical value.

71. To find the time of emptying a vessel through a very
small orifice.

Let « be the area of the effective orifice, or of the section
of the ¢ vena contracta,” x the depth of the orifice below the
surface, X the area of the surface, » the velocity at the ¢ vena
contracta” at the end of the time ¢ from the beginning of the
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motion. Then - d;z will be the velocity of the descending
surface; and (68) ( - d,2).X = u«; also if « be very small
compared with X, u=4/(282);: .. —dz.X =k4/(287).
But diz.d,t=1;

X

.. -\/(Qg) k.d.t + V(.l') =

Whence, since X is known in terms of x from the form of the
vessel, by integration we can find the time in which the surface
descends from any given altitude above the orifice to any given
inferior altitude, and, consequently, the whole time of emptying.

0.

It appears from experiment, that when the orifice is im-
mersed in fluid, the quantity of fluid discharged in a given
time, is the same as when the discharge takes place into air;
the perpendicular distance between the surfaces of the fluids in
the former case, being equal to the depth of the orifice below
the surface in the latter.

72. An incompressible fluid acted on by gravity issues
through a finite orifice in the horizontal base of the vessel in
which it is contained ; to determine its motion.

Draw AK (fig. 29) vertical meeting the plane of the orifice
in K. At the time ¢ let the surface of the fluid meet 4K in
H ; and let p, v be the pressure and velocity at any point P in
AK ; AR m¢c; AH =x; AP = ; K the area of the orifice; X
the area of the surface of the fluid; z the area of a horizontal
section of the vessel through P; TI the pressure of the atmo-
sphere. Then, since the fluid is acted on by gravity only (65),
§ = gd,s, therefore the equation found in (66) becomes

dv + vd,v = gd,x ~ 1d,p H
p

1
o fido + dvt=gr— ;p.

If we suppose the motion of the fluid to be vertical, and
the velocity, at a given instant, the same at all points in the
same horizontal section, d,s = 1, and Zv = Ku. Now Z is in-
dependent of ¢, and d,u is independent of z; ... zd,v = Kd,u.

. fdiv = fudye.dys = fidy = j,’-Z‘ dyu = K.d,uf_.% .
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]
Hence the equation [div + 3v*= g% - P p becomes

1 K? 1
duf,—+3—w=gzs—-p. (1
Kduf—+§u'=gs oP (1)

AtH,s=2,2=X,p=1Il; at K, x=c,2=K, p=1I;

K.d;u.ye%-{-%(l—;-i:;)u’_g(c—m). @)

The velocity of the surface of the fluid is d,», and dyu
= d,u.d,r, therefore d,z being known in terms of z and w,
for - d;z.X = Ku, (2) will give » and « in terms of ¢, and
then »p may be obtained from (1).

When the issuing stream is contracted, the section of the
¢ vena contracta” must be considered as the orifice.

If the pressure at H = M, and the pressure at the orifice
= n, ©

'Kd,ur/cé +3 (l —;{—{:) wWeglc-z) + l‘;(M - 1.

73. When the vessel is continually supplied with fluid, so
that the surface of the fluid remains stationary, «, and f %

s .C . 3
are constant. Hence, if K)\j -;—- {2g(c - w)}i..(l - £) !,

Xl

(Hymers' Integral Calculus, 21),
K*\4 K%}
feg (c-2)}i-u (“;.z) - [iﬁg(c—w)}5+u(1—§,) ]e-’“.

When K is small, and ¢ finite, A¢ is very large, and there-
fore ¢~ is very small. Consequently at the end of a finite
time from the beginning of the motion,

u® (1 - -];E;) = 2g (c — x) very nearly.

When the velocity of the fluid at a given point is inde-
pendent of the time, dju =0;
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74. When the waste of the fluid is not supplied, X.d,a °
= Ku, and equation (2) becomes

Ke L3 tl KQ
;.ud,uj: -Z-+§(1—§’-)u’-g(c—w);

. & .C 1
. if. f z= N, (Hymers’ Differential Equations, 15)

%K’u’- c"j;(;l'—;ii); -f‘gz(c - ) G'L(;"—;’.)%.

75. An incompressible fluid acted on by gravity flows
through a tube; to determine the motion of the fluid.

Let APK (fig. 80) be the axis of the tube; and, at the
time ¢, let p be the pressure, and v the velocity at P; AP =s;
x the depth of P below a horizontal plane through A; s the
area of a section of the tube at P; u the velocity at any point
K; K the area of a section of the tube at K.

Then since the fluid is acted on by gravity only, (65).
do+odomgds=2dp; < fdo+hetage-_p
P

Sv = K, and § is independent of ¢; therefore 5.d;,v = K.d,u,
and dyu is independent of s;

1 1 ' 1
R A =Kduf-; ... Kdu/ - —t'= --p. (1
Jidio = Rdju [~ K1ufs+§u,u gz -9 (1)

Let H, L be the extremities of the column of fluid;
AH = s, AL =s,; S, 5, the areas of sections of the tube at

H, L; s, =, the depths of H, L below a horizontal plane
through A. Then

K.d,u‘_[" % + % (—1— - l”) K'u'=g (2, -2) (2)

2
su sl

When the quantity of fluid in the tube is constant, let
V be its volume, then

s 3
V= _/ §; 8,.ds, =Ku; s, .ds, =Ku.
s

' - — - .. . —— o —
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From these equations, equation (2), and the equations to
the axis of the tube, we may obtain s, s , u.

"’

If K be the extremity of the tube, 4K = ¢, a the depth of
K below a horizontal plane through 4 ;

Kd,ufs+§( )u'-g(a—z) 3);

5,.ds,= KEu; and when d,s, is known in terms of s, and u,
s, u may be found from (8) and then p may be found from (1).

76. To determine the velocity with which a small dis-
turbance is propagated along a horizontal column of fluid.

Let AP (fig. 31) be a horizontal tube filled with fluid, the
equilibrium of which has been slightly disturbed ; P, Q discs
serving to separate the fluid between P and Q, from the rest of
the fluid in the tube, without impeding its motion; « the area
of a section of the tube; «, and & + &.r the distances of P and Q
from A, and p the density of the fluid, before its equilibrium

was disturbed. At the time ¢ let 4P =y, and the pressure *

at P=p; therefore, ultimately, 4Q =y +d,y.dz, and the
pressure at Q=p + d,p.dx.

The moving force on the cylinder of fluid PQ in the di-
rection AP = pressure on the end P - pressure on the end Q
= —«xd,p.dz; the mass of the fluid in PQ =«xp.dx; there-

fore effective acc®. force on PQ in the direction AP = — ! D3
) P
1
. d?y == ‘d:P-
P

(1) Let the fluid be air, T its temperature and p its
density; p=u (1 + ET) p the equation expressing the relation
between the pressure and density of the fluid at the tempera-
ture T when at rest. T’ the temperature, p’ the density of the

fluid at P, w(l - —P—,) the number of degrees by which the
P
temperature of a given mass of the fluid is increased when its

density is suddenly changed from p to p’, therefore

'r'—'r=w<l—§).

¢ e m e - ame— et e em— e L
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The volume of PQ = «xd,y.dx, therefore the mass of the
fluid in PQ=«xp'd,y.dz; but the mass of the fluid in
PQ =«p.dx, therefore p'd,y = p. If p be the pressure at P,

p=p(Q+ET)p =pf{l+ET+E(T -T)}p

(1+ 2 )(1+r’r) ! - wE
" 14 ET ‘1P T rEwp
K(1+ET) ! E where K =1 + Eo
- Lt ) = s
# Py~ teer 1+ET’
1 dly
s -dp=-uK(1+ET)——.
P )(d,y)“

Since the disturbance is small, p and p’ are very nearly equal,
therefore d,y = 1, very nearly ;

1
;d,p- -uK(1+ET)dly;

o djy=puK (1+ ET)d%y.

(2) Let the fluid be of the kind denominated non-elastic,
or liquid. The increment of the density of a liquid under a
moderate pressure is found to be proportional to the pressure.

Let, therefore, p + P be the density of the liquid under the
m

pressure p. Then x(p + E) d,y.dx = mass of PQ = xp. dz.
m

Since the disturbance is very small, p is very small compared
with up, therefore upd.y =pp —p very nearly ;

coppdiy=-d,p; oo diy=pdy.
In liquids, the heat developed by compression is nearly
insensible.
(8) Let AP be a rod vibrating longitudinally, 2% the
m

quantity by which the rod is shortened, or lengthened, when it
is compressed longitudinally, or extended, by a pressure xp, the
original length of the rod beingc. Thend,y.dx = length of PQ

= (I—L).S.r; oo updiy = —d.p;
np

———ta——
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o d"y - pd:y.

In consequence of the variation of the thickness of a rod,
when it is compressed longitudinally, or extended, the variation
of its length (Pouillet, Elémens de Physique, 463) is 1,5 of what
it would be if its thickness were invariable. It is the variation
of the length of the rod, on the latter supposition, that is to be
used in deducing the value of u.

77. The equation of the motion of the disturbance is of
the form djy = a’d®y. The integral of this equation may be
made to depend on that of d;~ = ad,z, which we know to be
z = ¢ (v + at), in the following manner :

ddy = a*d,d,y, dd.y=d.dy;
<. d(ad,y +dy) = ad (ad,y + dy),
di(ad,y - diy) = - ad,(ad,y - d,y);
. ad,y + diy = ¢ ( + at),
ad,y - dyy =\ (2 - at);
- 2ad,y = ¢ (2 +at) + (2 - ab),
2dy = ¢ (z + at) -y (2 - at);
and y = F(z + at) + f(x - at).

78. Let the initial disturbance extend through a very small
space 2a, that is, from — a to a; then at the beginning of the
motion, or when ¢ = 0, ad.y + dy = ¢, ad.y—d,y =\x; and
the fluid at any point distant from 4 by a quantity greater than
« will be at rest, therefore d,y = 1, d;y = 0; and therefore
¢ = a, x = a, as long as 2 does not lie between — a and a.
Therefore ¢p(= + at) = a, except when z + at lies between — a
and a; and \/(z—-at) = a, except when z —at lies between —a
and a; hence d,y = 0, except when one of the quantities x + a¢,
& — at lies between — a and a. When @ — at is less than - q,
or greater than a, x + at is greater than a; therefore if P, R
be any two points in 4P, the fluid at P will remain at rest till
AP - at = a, or till the time (4P - a) +a, it will then begin
to move, and will return to a state of permanent rest when
AP — at = - a, or at the time (4P + a)+a. In like manner,




MOTION OF FLUIDS. 57

the fluid at R will begin to move at the time (AR - a)=a,
and will return to a state of rest at the time (AR + a)--a.
Hence the fluid at R will begin to move (PR - a) later than
the fluid at P; therefore the velocity with which the dis-
turbance is propagated = { PR+ (PR+a)} = a.

79. The motion of a small disturbance propagated along
a horizontal tube might have been determined by means of the
equations in (66) and (67). We shall employ these equations
in the solution of the following problem :

To determine the motion of a small disturbance propagated
in air symmetrically through a solid angle.

Let v be the velocity, p the density, p the pressure of the
air at the distance s from the vertex of the solid angle at the
time £; & the resolved part of the force estimated in the direc-
tion in which s is measured.

The motion of the air at any point is directed from or
towards the vertex of the solid angle, therefore x oc 8*. The
variation of p is very small compared with that of v, therefore
we may substitute pd, (xv) for d, (pxv); s is independent of ¢,
therefore d,(¢p) = s’dp. Hence the equation of continuity
(67) becomes s'd;p + pd, (s°v) = 0.

Since the velocity of the air is small, vd,v vanishes com-
pared with dv, therefore the equation in (66) becomes

1
dv=S--dnp.
p

But, if T be the temperature of the air when at rest,
d,p = a'd,p, where a* = uK(1+ ET);

2
wdw=8-Zdp;: - [do=[S-alog,p,
p
dfido=-at~dp=Sd,(0). Udp=s,
P
1 v 1 & 1
34.(6'0) =25 4 do =~ (20, + 041) = - D1(s9),

d, fidyo = digp = %d’,(c@) P e d(eg) = a'd(s9)
8
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= (77) 8¢ =F (s + at) + f (s — al).
Whence, differentiating with respect to s, and observing that
d3¢ =T,

c =-:- {d.F (s +at) + d,f(s-at)} —}Q{F(c+at)+f(c -at)}.

It may be shewn exactly as in (78) that a is the velocity with
which the disturbance is propagated.

80. Sound is produced by a repetition of such dis-
turbances. The velocity of sound in any medium is the
velocity with which a swall disturbance is propagated through
it. Hence the velocity of sound in air at the temperature T

=+/{rE(Q +ET)}.

If p be the density of dry air at the temperature T under
the pressure [I, p the density of air mixed with vapour, the
pressure of which is Y, at the same temperature and under
the same pressure,

Y
p, = (1—0,375-ﬁ)p (#¢1); - M=p(Q+ET)p

={u(1+ET)p} + (1 -o,375%) ={u(1+ET)p}. (: +o,375%)

very nearly. .

But the velocity of sound in a medium the pressure and
density of which are Tl and p, respectively = (IIK)=p,
Hence the velocity of sound in the mixture of air and vapour

= \/{uK (1+ ET)(I + 0,375 %)}

According to the best of the observations made by MM.
Moll, Vanbeek, and Kuytenbrower, (Phil. Trans. 1824, 1830),
sound travels 17669,28 metres in 51,9873 seconds of time, the
temperature of the air being 11,01° C, and its pressure and the
pressure of the vapour mixed with it being equal to the
pressures of 0,74618, 0,00889 metres of mercury respectively.
From these data it appears that sound travels at the rate of

1090,8.\/{(1 + 0,003665 T) (1 + 0,375 %)}
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feet in one second of time, in atmospheric air at the tempera-
ture T, TI being the pressure of the air and Y the pressure of
the vapour contained in it.

Attempts have been made to determine K by observing
the change of temperature which a given mass of air undergoes
when suddenly compressed or dilated. Its value obtained by
this method is 1,3748, according to Gay Lussac and Welter.
It may be deduced with greater accuracy from the observed
velocity of sound. We have seen that 4/ (uK) = 1090,8 feet,
and that 4/ (u) = 916,188 feet, whence K = 1,4175.

The experiments of Oersted shew, that when water is
pressed by a column of water 33,14 feet high, its density is
increased by 0,0000461 of its original density, the force of
gravity being 82,21 feet;

< po= (82,81) (82,21) <+ (0,0000461), 4/ (1) = 4860.

The velocity observed by MM. Colladon and Sturm was 4708
feet in one second.

81. To express the equations of the motion of a fluid in
terms of rectangular co-ordinates.

Let PQ (fig. 21) be a parallelopiped of the fluid, having
its edges PL, PM, PN parallel to the axes of co-ordinates,
and which we may suppose to be enclosed in a perfectly flexible
and extensible envelope. Let P/, Q', L', M’, N" be the places
of P, Q, L, M, N at the time ¢ + 0¢. z,y, = the co-ordinates

of P; z +dm, y+3y, =+ Jdx those of Q; u, v, w the com-

ponents of the velocity of P parallel to the axes of z, y, =.
p the pressure, p the density of the fluid, at P at the time ¢,
and X, ¥, Z the components of the resultant of the forces that
act upon the fluid at P resolved parallel to the axes.

The pressure at L will be p + d,pdx ult. The moving
force on PQ in & direction parallel to OX

= press. on NM + (mass PQ) X — press. on QL
= dzdyds.(pX —d.p).
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But mass PQ = pdrdyds ; therefore the effective accele-
rating force on PQ parallel to OX

=X-"dp.
P

In like manner the effective accelerating force on PQ in a
direction parallel to OY

1
= Y—Pd,p.

And the effective accelerating force parallel to 0Z
=z-lap.
P

u, v, w, are functions of ¢, «, y, %; the co-ordinates of
P are v+ udt, y+vdt, s+wdt. Therefore, at the time
t +3t, when P arrives at P, the component of the velocity
of the fluid at P’ parallel to OX will be

% + dyudt + d,u.udt + dyu.vdt + d,u.wdt, ultimately.

But the increment of the velocity estimated in a given
direction in the time d¢ is equal to the product of the effective
accelerating force estimated in the same direction multiplied
by 8¢. Hence

du + ud,u + vdu + wd,u = X ~ 1 -
In like manner F

dv + ud,v + vdyv + wd,v=Y —l o D-
And i

1
dw.+udw +vdw+ wd,w=2Z - —d,p.
P

82. A fourth equation, called ¢ the equation of con-
tinuity,” is furnished by the condition that the mass of the fluid
contained within the figure P'Q" must be equal to that of the
fluid contained within the figure PQ.

The co-ordinates of L', which may be deduced by sub-
stituting  + dx for # in those of P, are ultimately
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2+ 3o + udt + d,udzdt,
¥ + 08t + d,vd281,
s+ wdt +d,wdzdt.

By comparing the co-ordinates of P’, L’ with those of
P, L it appears that P’L’, Ox are nearly parallel, and that

PL =321 +d,udt).

In like manner PM’, Oy are nearly parallel, and
PM =3y(1 +d,08¢);

and P'N’, Os veatly parallel, and
PN =i (1 + d,wét).

In the same way P'L', PM, PN are found to be
ultimately parallel and equal to the edges of P'Q, which are
respectively opposite to them. Hence

voLPQuPL.PM.PN =(1+d,u8t+d,vdt+d,wit)dzdyds.
Density at P'w=p + dipot + d,p.u3i +d,p.v3¢t + d,p.wét.

Mass P'Q = (vol. P'Q) (density at P’). But mass P’'Q = mass
PQ. Whence

dip + ud,p + vdyp + wd,p + pd, 4 + pdyv + pd,w =0,

dip + d,(p) + d, (pv) + d, (pw) = 0.

When the fluid is compressible p is known in terms of p.
When the fluid is incompressible p is invariable, and the pre-
ceding equation reduces itself to

du+dw +dw=0,

In either case, therefore, we have four equations to deter-
mine the four unknown quantities p, u, v, w, in terms of
Loy s

83. If a quantity ¢ can be found such that
dp = u, dop=v, d¢=mw,

et . " - o e e ———— + o o .. e e . e, e
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a quantity ¥ such that
V=X, dV=", dV=2,

and a quantity P such that
d,P="dp, dP=dp dP=ldp
(] P.r’ Y Py’ 'z P:,

the equation

dip + % {(d.p)*+ (dyp)* + (d,9)*} =V - P
will satisfy each of the three equations (81)

This is in fact nothing more than the equation
do+ovdo=S- ld,p,
p

which we obtained in (66) by a simpler process. For if we
integrate each term with respect to s it becomes

1
fidv +30°= [(§- [-d,p;
poiote - [

and it may be easily shewn that

[8=F, [Jap=P; [domdip = (4$)+ @)+ (4P

The equation of continuity expressed in terms of ¢ becomes
dip + d, (pd @) + d, (pdyP) + d. (pd.¢p) = 0.
When the fluid is incompressible,

¢ +dip+ @i =o.




SECTION VI.

ON RESISTANCES.

Arr. 84. THE resistance of a fluid on a solid moving in
it, is the resultant of the excess of the pressure of the fluid on
the solid in motion, above the pressure of the fluid on the
solid at rest.

Let 4APB (fig. 32) be a solid, moving in a fluid with the
velocity ¥ in the direction B4. Now if we communicate to
the fluid and the solid a velocity V in the direction 4B, the
pressure of the fluid on 4PB will not be altered; and the
solid will be at rest in a fluid moving in the direction 4B
with a velocity V. Hence the force with which a fluid in
motion impels a solid immersed in it, is equal to the resistance
of a stagnant fluid on a solid in motion, the velocity of the
fluid in one case being equal to the velocity of the solid in the
other. So also, when both the solid and fluid are in motion,
the resistance on the solid is equal to the force with which the
solid at rest would be impelled by a stream moving with the
relative velocity of the fluid and solid.

Let the cylindrical surface generated by a straight line
parallel to 4B touch the solid in the curve PQR. The
pressure on the surface R4APQ, will upon the whole be greater,
and the pressure upon PBQR, less, than when the ‘solid and
fluid are relatively at rest. In the following Articles we shall
consider that part only of the resistance, which arises from the
increased pressure on RAPQ.

It must be observed that the following theory of resist- '

ances, which is the same as that given in the Note, page 188, of
Mr Moseley’s Hydrostatics, is very imperfect, and that it is
useless to expect any close agreement between the results de-
duced from it, and those obtained by experiment.

-—— e e v
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85. To find the force with which a stream impels a plane,
the plane being perpendicular to the direction of the stream.

Let P (fig. 38) be a point in the plane; EP the direction
of the stream, perpendicular to the plane ; p’ the pressure at P;
p the pressure of the fluid at P before the plane was immersed,
or, the pressure of the fluid at the point P in a plane moving
with the same velocity, and in the same direction as the fluid ;
p the density of the fluid; K the area of the plane.

Then p’ - p will be the resistance of a unit of the plane at
1
P. Now (65) $v*= (S = - p; and after the plane is immersed,
P :

the velocity at P=0; .. 0= (S - 1p'; cp = p=3pr’ and
» P
the resistance on the plane = (p’'— p) K = pv’K.

3 pv*K is the weight of a column of fluid having the given
plane for its base, and the altitude of which is the space due to
the velocity of the fluid.

If the plane be made to move in a direction perpendicular
to EP, it is manifest that the force with which the stream
impels the plane will not be altered. Hence the force with
which a given fluid impels a given plane, depends only on that
part of the relative velocity of the fluid and plane which is
perpendicular to the plane. Also, since the resistance, or
impelling force of the fluid, arises from the pressure of the
fluid on the plane, it must act in a direction perpendicular
to the plane.

86. A stream impinges obliquely on a plane; to find the
force with which the stream impels the plane.

Let P (fig. 33) be a point in the plane; 4P the direction
of the stream ; EP perpendicular to the plane; v the velocity
of the stream ; R the resistance, or the force with which the
stream impels the plane.

The velocity of the stream estimated in the direction EP

=v.cos APE; .. R=4pt* (cos APE)’K.
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The resolved part of the impelling force estimated in the
direction of the stream

= R.cos APE = }po*.(cos APE)'K.

The resolved part of the impelling force estimated in a
direction perpendicular to the stream, and in the plane 4PE,

= R.sin APE = }pv*.(cos A PE).sin APE.K.

87. A portion of a cylindrical surface having the curve
BPC (fig. 84) for its base, and bounded by planes parallel and
perpendicular to its generating straight line, is immersed in a
stream flowing in the direction 4E; to find the force with

which the stream impels the cylinder in the directions 4F
and MA.

Draw AN perpendicular to 4E; PM, QN parallel to
AE; PE a normal to BP at P. Let a be the altitude of
the cylinder, MP = 2, AM =y, MN = dy, R the impelling
force, or resistance, on that part of the cylinder which stands
on BP, estimated in the direction 4E, therefore ultimately
d,R .3y = resistance on that part of the cylinder which stands
on PQ = }pv* (cos AEP)*a.PQ = } pv* (cos AEP)*ady,

a
- . . - ’—
and tan AEP dyazy .. d,R=4%pv TG

. and R-ipv’aLT:;Tyﬁ.
So also, if § be the resistance on the part BP of the
cylinder, estimated in the direction M4, :
d,S.dy = } p»* (cos AEP)*sin AEP .a . PQ
=} pv*. cos AEP.sin AEP .a.dy;
d,x d,x

—— , e ————
@y S ter “.41 + (o)

The integrals must be taken between limits corresponding

to B and C.

dyS = %Pt’?a

88. A solid is generated by the revolution of the curve
BPC (fig. 34) round 4E; to find the force with which it is
impelled by a stream moving in the direction AE.
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Let R be the resistance on that part of the solid which is

generated by the revolution of BP round 4E; then, retaining
the construction and notation of the preceding Article, we have
ultimately, d,R.dy = }v*.(cos PEA)’.2x.4AM.PQ

. -rpt—©3d .
o dyR=pv T+ (d,2)

. = ou! y
<. R=pv "./,-——'l+(d,w)" from B to C.
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SECTION VII.

DESCRIPTION OF INSTRUMENTS. METHODS OF FINDING BPECIFIC
GRAVITIES, &C.

AgrT. 89. AvrmosT all bodies expand by heat, and con-
tract by cold. This property furnishes the only known mode
of comparing and recording the temperatures to which any
body is exposed. The expansions of mercury, or air, combined
with that of the glass vessel -in which they are contained, are
usually employed for this purpose.

90. The common mercurial thermometer is a glass tube
of uniform bore, having a bulb at one end, which, with part of
the tube, is filled with mercury; the other end is usually sealed,
the space between it and the mercury being a vacuum.

To fill the thermometer with mercury, the air must be
partly expelled from the bulb by holding it over the flame of
a lamp, and then, the other end, which is open, immersed in
mercury. As the bulb cools, the mercury will be forced into it
by the pressure of the atmosphere. If a paper funnel be now
tied round the open end, and filled with mercury; and the
mercury in the bulb be heated till it boils, the remainder of
the air will be driven out, and its place supplied by mercurial
vapour: this condenses on cooling, and the mercury will
descend from the funnel and fill the instrument completely.
When it has cooled down nearly to the highest temperature
intended to be measured by it, the open end must be sealed ;
and as it continues to cool, the mercury will descend, leaving
a vacuum in the upper part of the tube.

91. To graduate a thermometer.

Let the bulb, and that part of the tube which is occupied
by the mercury, be immersed in melting snow, and make a
mark on the tube, opposite to the extremity of the column of
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mercury, when it is stationary. This is the freezing point.
Next let the thermometer be surrounded by the vapour of
water boiling under a given atmospheric pressure, and make a
mark on the tube at the place where the extremity of the
column of mercury rests, when it is stationary. This is the
boiling point. The space between the freezing and boiling
points, in the centigrade thermometer, is divided into 100
parts of equal volume, called degrees; the freezing point
being called °, and the boiling point 100°% In Fahrenheit's

thermometer the space is divided into 180 parts. The freezing'

point is marked 82°; and the boiling point 212°. In Reaumur’s
thermometer the freezing point is marked 0° and the boiling
point 80°. '

92. ‘The temperature of melting snow is found to be the
same under all circumstances. - The temperature of steam,
however, varies with the atmospheric pressure. 100° of the
centigrade thermometer denotes the temperature of steam, when
the pressure of the atmosphere is equal to that of a column of
mercury at 0", 0,76 métres, or 29,9218 inches high, at the mean
level of the sea in lat. 45°. A variation of 1,045 inches in the
height of the mercury in the barometer, occasions a change of
1° in the temperature of steam. The boiling point of Fahren-

" heit’s scale has never been properly defined.

93. To compare the scales of two differently graduated

thermometers. *

Let 4, B, X be any three points on a thermometer tube;
a, b, z; a', b', o' the corresponding degrees in two different
scales. Then, since the number of degrees contained between
any two points on the tube is proportional to the capacity of
the corresponding portion of the tube,

r—a vol.A4X a' -ad vol. 4X
b—a vol. AB' b —da  vol. AB "

1] ’
T - a T —-a

b-a b-da

Let C° of the centigrade thermometer, F*' of Fahrenheit's,
R~ of Reaumur’s, denote the same temperature : then, if we
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drical bar of iron passing through a water-tight collar in the
bottom of the hollow cylinder 4B, has one end fastened into
the cylinder M, while a ring at the other end serves to connect
it with the pile or cable.

Tue Divine BeLr. (Fig. 86.)

97. The diving bell is a chest, the weight of which is
greater than that of the water it would contain, suspended by
a rope with its mouth downwards. If the bell be lowered out
of air into water in this position, the air contained in it will
prevent the water from rising in the upper part of the bell,
and thus enable persons to breathe at considerable depths
below the surface of the water.

To find the space occupied by the air in the bell at any
depth below the surface.

Let BE be the bell, draw 4M vertical meeting the surface
of the water on the outside of the bell in 4, and the surface of
the water within the bell in M ; and let A be the altitude of a
column of water the pressure of which is equal to that of the
atmosphere (about 84 feet). When the bell was at the surface
the air in it occupied the space DECB, under a pressure equal
to that of a column of water the height of which is A; and the
pressure at M is that of a column of water the height of which
ish+AM,

vol. BMC  atmospheric pressure h
vol. DECB ~ pressure at M “h+ AM

The water may be almost wholly expelled from the interior
of the bell by a supply of air from above, forced by an air-
pump through a flexible tube terminating under the mouth of
the bell. In this manner also the air is changed as often as
it becomes unfit for respiration.

-, (81.)

Tue Syruow. (Fig. 37.)

98. The syphon is 2 bent tube 4BC open at both ends.
Let the ends be closed, after filling it with fluid, and place it
with one end in a bowl of the fluid with which it was filled, so

’\\

-— A
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that the other end may beelow the surface of the fluid in the
bowl. Let the plane of the surface of the fluid in the bowl
meet the legs of the syphon in H, K, the height of B above
the surface of the fluid being less than the height of a column
of the fluid, the pressure of which is equal to the atmospheric
pressure [1. If the end 4 be opened, the pressure within the
tube at H will be II; and if the end C be opened, the pressure
at C will be [1. Since the columns of fluid HB, BK would be
in equilibrium if the pressures at their lower ends were equal,
the columns HB, BC will not be in equilibrium, but the
column BC which has the greater altitude will descend and
run out at C, while the fluid in the bowl is forced up 4B by
the pressure of the atmosphere. And this will continue till the
surface descends to the level of the highest end of the syphon.

The syphon will not act when the altitude of ‘the highest
part of it above the surface of the fluid in the bowl, is greater
than the height of a column of the fluid the pressure of which
is equal to that of the atmosphere. For on opening A, the
fluid in B4 will sink till its altitude is such that the pressure it
exerts at H, becomes equal to the pressure of the atmosphere,
leaving a vacuum at B. '

Tae Coumon Pume. (Fig. 88.)

99. 4B, BC are two hollow cylinders having a common
axis; C the surface of the water into which the extremity of BC
descends; M a piston capable of being moved up and down by
a rod MA, and containing a valve opening upwards; 4B the
range of the piston; B a valve opening upwards; D a spout
placed a little above A.

Suppose M to be at B, and the pump to be filled with air
the pressure of which is equal to that of the atmosphere; and
let M be elevated to A. Then, the air in BC will open the
valve B and fill AB, and the pressure of the air in the
pump being less when it occupies the space 4BC, than when
it occupied the space BC, the pressure of the atmosphere will

~force the water up BC till the pressure at C is the same as be-
fore, or equal to the pressure of the atmosphere. As soon
as M begins to descend, the valve B closes, and the air be-
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tween M and B escapes through the valve M. The water
will ascend in the pump each time this process is repeated, and
will finally pass through the valves B and M ; and then, when
M ascends to 4, it will flow through D.

If A be thw altitude of a column of water the pressure of
which is equaltb that of the atmosphere, BC must always be
less than A, otherwise the water would never reach B.

100. If P be the surface of the water in BC, r the radius
of the cylinder 4B, p the density of water, and if we suppose
M to ascend very slowly; the pressure of the air in MP
=gp (h - PC), therefore the pressure upwards on M = gpxrr*
(h - PC), and the pressure of the atmosphere downwards on
M = gp 1R, therefore the tension of the rod 4AM = gp=r*. PC.

101. To find the height through which the water rises
each time the piston ascends.

Let P be the surface of the water in BC when Misat B;
Q the surface of the water when M is at 4. Then, the pres-
sure of the air in BP = gp (h — PC), and the pressure of the
air in 4Q=gp(h - QC); (but pressure of the air in BP):
(pressure of the air in 4Q) = (vol. 4Q) : (vol. BP);

o h=PC : h-QC=(vol.4Q) : (vol. BP).

102, When 4E is the range of the piston, the pressure of
the air between B and M, when M is at E, must be greater
than the pressure of the atmosphere, otherwise the air will not
escape through the valve in M, and M will reascend without
increasing the elevation of the water in BC. Let P be the
surface of the water in BC when M is at 4. The pressure of
the air in the pump = gp (h — PC). When M comes to E the
pressure of the air in BE =gp (h - PC) AB--EB; aund this
must be greater than gph, the atmospheric pressure; therefore
AE.h must be greater than 4B.PC. BC is the greatest
value of PC, therefore AE.2 must be greater than 4B.BC.

103. Suppose the whole pump to be part of the same cylin-
der, and the valve to be at, or near the surface of the water.
Let AE (fig. 39) be the range of the piston, P the surface of

10



74 DESCRIPTION OF INSTRUMENTS.

the water within the pump, C the surface of the water on the
outside. When the piston is at 4, the pressure of the air in
AP =gp(h - PC); when the piston descends to E, the pres-
sure of the air in. EP = gp (h - PC) AP+ EP, and this must
be greater than gph, the atmospheric pressure, in order that
the valve in the piston may- open, therefore h.4E must be
greater than AP.PC. The greatest value of 4P.PC is $ 4C,
therefore 42. AE must be greater than AC*.

Tar Forcing Pomr. (Fig. 40.)

’% M is a solid piston working in a hollow cylinder
ABC, the lower end of which is immersed in water; DF a
tube ascending from 4B ; B, D valves opening upwards ; 4E
the range of the piston.

Let M be at E, and the pressure of the air in the pump
equal to the atmospheric pressure. Let A be elevated to 4,
then the pressure of the air below A is diminished, and the
pressure of the atmosphere will force the water up the tube BC.
When M descends the valve B closes, D opens, and a portion
of the air between M and B escapes through DF. When M
ascends, the water rises in BC as before, and at last rises above
B, and is forced up the tube DF when Af descends. On ele-
vating M, D closes, a fresh portion of water enters 4E through
B, and is forced up DF by the next descent of M.

A solid cylinder working in a water-tight collar at A, is
frequently used instead of the piston M.

The stream of water may be rendered continuous by means
of a close vessel DF (fig. 41) filled with air; H is the lower
extremity of the ascending tube. When the surface of the
water in DF rises above H, the pressure of the air, which is
condensed in the upper part of DF forces the water up HF in
a continued stream.

Tue Frre Excixe. (Fig. 42)

105. AB, A'B’, are two forcing pumps, having a common
air vessel DF, and suction tube C. The pistons are worked
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by a lever LGL', so that one descends while the other ascends.
The jet of water may be pointed in any direction by means of
the flexible tube F. The action of the engine is in all respects
the same as that of the forcing pump.
Tue Conpenser. (Fig. 43.) -t
106. 4B is a hollow cylinder, of which the end B is
screwed into the neck of a strong vessel C; M a piston con-

taining a valve opening downwards; B a valve also opening
downwargs.

Suppose M to be at 4, and the barrel 4B and the receiver
C to be filled with air of the same density as the atmospheric
air. When M begins to descend the pressure of the air in M B,
which is increased in consequence of the diminution of its volume,
closes the valve M, and opens the valve B; and when M is
thrust down to B, a quantity of air, which, under the pressure
of the atmosphere, occupied the space 4B, is forced into C;
when M begins to ascend, the pressure of the air in C closes the
valve B, and the pressure of the atmosphere opens M, and
when M comes to 4, AB is filled with air under the pressure of
the atmosphere, and this is forced into C by the next descent
of M.

To find the density of the air in the receiver after n
descents of the piston. '

Let A, B, be the capacities of the receiver and barrel re-
spectively ; p the density of atmospheric air. Then pa will
be the mass of the air contained in the receiver at first, and pB
the mass of the air forced into the receiver at each descent of
the piston, therefore pA + npB will be the mass of the air in
the receiver after n descents of the piston ; and its volume is A,
therefore its density will be

( B
P (l +n Z) .
107. The gauge of a condenser is a glass tube 4B (fig. 44)

sealed at 4 and communicating with- the receiver of the con-
denser at B, the part AP of the tube is filled with air which is

— e —
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separated from the air in PB by a drop of mercary P. When
the air in the receiver is condensed, P is forced towards 4, till
the pressures, and, therefore, the densities of the air in 4 P, PB
are equal. Let p be the density of atmospheric air ; thep, when
the drop of mercury is at Af, the density of the air in 4M or

: AP
ME = p=o (31).

Hawxssee’s Az Puvur. (Fig. 45.)

108. 4B, A'B’ are two hollow cylinders communicating
at B, B, with a strong vessel by means of e pipe C; M, M’
pistons containing valves opening upwards, and worked by
a toothed wheel E; B, B', valves opening upwards.

Suppose M to be at 4, and M’ at B, and the density of
the air in the receiver C, and in 4B, to be equal to the density
of atmospheric air. Then if E be turned so that A may
descend and Af' ascend, the valve B’ opens, B and M’ close,
and a quantity of air, which at first occupied the space 4B, is

Wheel is turned in the opposite direction, the valve B opens,

and B’ close, and a quantity of air, which after the first
turn of the wheel occupied the space 4'B’, is forced through
M by the descent of M’ from 4’ to B'. The exhaustion
may be carried on to any required extent, by a repetition of
this process.

\f?ced through the valve Af, by the time M reaches B ; when the

To find the density of the air .in the receiver after any
number of turns of the wheel E.

Let A, B, be the capacities of the receiver and barrel re-
spectively ; p the density of the air in the machine p,, p;...p,
the densities of the air after 1, 2,...... n turns. Then, the air,
which occupied the space A when M was at B, will occupy the
space A + B when M comes to A, therefore p, (A + B) = pA,
similarly p, (A + B) = p, 4, and so on;

<. pa(A +B) =pa”

Hence if 4 be the altitude of the mercury in a barometer,
o the density of mercury, and: thereforc goh the pressure of
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the atmosphere, the pressure of the air in the receiver after n

tums w‘ll be
ga’ .

The employment of two pistons worked by the same wheel
diminishes considerably the labour of working the pump. For
the pressures of the atmosphere on the upper surfaces of M, M’
being equal, the pump may be worked by a force sufficient to
overcome the friction together with the difference of the pres-
sures on the under surfaces of M, M’'; while the ascent of a
single piston is opposed by the friction together with the dif-
ference between the pressures on its upper and under surfaces.

SuEaToN's Aix Poxr. (Fig. 46.)

109. 4B is a hollow cylinder communicating with the
receiver by means of the pipe BC'; M a piston worked by a rod
AM passing through an air-tight collar in a plate which closes
the upper end of the cylinder; at 4, M, B, are placed valves
opening upwards.

Let A, B be the capacities of the receiver and barrel re-
spectively ; p the density of the air in the machine; and sup-
pose M to be at 4. Then, as soon as M begins to descend,
the valves 4 and B will close, and the valve at M will open :
when M reascends from B to 4, the valves 4 and B will open,
and the valve at M will close; and the air which occupied the
space A before M left 4, will occupy the space A + B when
M returns to 4.

Hence, if p), pys...p. be the densities of the air in the
receiver after 1, 2,...n descents and ascents of the piston,
pr (A + B) = pa, similarly p, (A + B) = p,a, and so on,

<o pa(A + B)' = pa"

The valve 4, which closes as soon as M begins to descend,
relieves M from the pressure of the atmosphere, and the valve
in M is opened by a very small pressure of the air beneath.
On this account Smeaton’s pump is capable of producing a
greater degree of exhaustion than Hawksbee's. Also the re-

=t e e
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moval of the pressure of the atmosphere on M, diminishes the
labour of working this pump.

110. The receiver is usually a strong glass jar, having its
mouth ground truly plane, placed with its mouth downwards
on a plane surface of brass, into which the extremity of the
tube C is inserted. The junction of the receiver and the plate
of brass is rendered impervious to the air by smearing the edge
of the receiver with some unctuous substance. The valves are
formed of a triangular piece of oiled silk stretched over a
grated orifice in a plate of metal, to which the corners of the
triangle are fastened. When the air presses on the upper
surface of the valve, the silk is brought into contact with the
edge of the orifice, and the passuge of the air through it is pre-
vented. When the air presses on the under side of the valve,
the silk is lifted up from the grating, and the air finds a free
passage between the silk and the plate of the valve.

111. The barometer gauge is a vertical glass tube not
less than 31 inches long, the lower end of which is immersed in
a cistern of mercury, while its upper end communicates with
the receiver.

If = be the altitude of the mercury in the gauge above the
surface of the mercury in the cistern, the pressure of the air in
the receiver = goh — gox. Hence, the density of the air in
the receiver

112. The syphon gauge is a glass tube 4BCD (fig. 47)
closed at 4, and communicating with the receiver at D; 4B
and part of BC is filled with mercury. As the exhaustion
prt')ceeds, the mercury sinks in 4B and rises in BC; and if &
be the perpendicular distance between the surfaces of the
mercury in 4B and BC, gox will be the pressure at the
surface of the mercury in BC, or the pressure of the air in the
receiver.
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Tue Common Baromrrer. (Fig. 48.) i

113. The principle of this instrument is explained in (28). i
In order to avoid the trouble of observing the altitudes of both °
extremities of the column of mercury, the diameter of the tube
BC is made much greater than that of the tube 4B, and a scale
of inches is attached to AB. Let zero of the scale of inches be
at K'; and when the plane of the surface of the mercury in BC
passes through X, let H be the upper extremity of the column
of mercury. When the extremity of the mercurial column
is at P, let the plane of the surface of the mercury in BC pass
through Q; and let H, K be the areas of horizontal sections of
the tubes 4B, BC, respectively. Then, H. HP = K.KQ, and
HP is the apparent variation of the altitude of the mercury;
but its real variation

= HE-PQ=HP+ KQ= (1 *IE{) . HP,

C
and the true altitude of the mercury = PQ=HK - (1 + IEI) .HP.

In some barometers the cjstern is constructed as in fig. 49,
and the mercury in it is elevated or depressed by a screw, till
its surface touches a fine point, which is in the sathe horizontal
plane with the zero of the scale when the tube 4B is vertical.

In order to obtain the true height of a column of mercury,
the pressure of which is equal to that of the atmosphere, we
must add the capillary depression of the mercury in 4B to the
observed altitude. The exact amount of the depression in
glass tubes of different diameters appears to be rather uncertain.
Hence, in order to determine accurately the absolute height of
the mercury, the observations must be made with a barometer
having a tube of such large internal diameter that the depres-
sion may be nearly insensible; or with the syphon barometer
(fig. 17) in which, on account of the equality of the tubes 4B,
BC, the extremities of the columns of mercury in them are

equally depressed.

114. To compare the specific gravities of air (or gas)
and water. ’

T ——_—,
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Let a large glass flask capable of being closed by a stop-
cock, be exbausted as completely as possible, and weighed.
Permit the air to enter the flask, and weigh it again. Lastly,
weigh the flask when filled with water.

Let X be the weight of the exhausted flask, v its weight
when filled with air, W its weight when filled with water.
Then Y - X is the weight of the air contained in the flask,
W — X the weight of the water contained in it. Therefore,
since Y - X, W — X, are the weights of equal volumes of air
and water respectively,

specific gravity of air _Y-x
specific gravity of water W -x )

According to the experiments of Biot the specific gravity
of water at 20,5° is 768,264 times that of dry atmospheric air
at 0°, under the pressure of 29,922 inches of mercury at 0%, in
lat. 45°.

115. It has been tacitly assumed in (114) that the ex-
haustion of the flask can be carried so far that the weight of
the air remaining in it may be neglected, and that the tempera-
ture and pressure of the atmosphere remain unchanged during
the process of weighing. When these conditions cannot be
satisfied, let the flask in which the air is weighed be counter-
poised by an air-tight flask, the external volume of which is
exactly equal to that of the former flask when closed.

Let Y be the apparent weight of the flask filled with air of
nearly atmospheric pressure, X its apparent weight when the
pressure of the air within it has been diminished as far as
possible by exhaustion. Since the weights of the atmospheric
air displaced by the two flasks are equal, ¥, X will not be
affected by any change of density which may take place
between the two weighings. =z, II, T; 2, IT, T’ the weights,
pressures, and temperatures of the air contained in it in the
former and latter cases respectively ; E the expansion of the air
for one degree of temperature. Then ‘

z Mi1+ET

Zz Ni+rET’
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nNi1+eT
Y- X=Z2Z-2 =7 |]l-—= ———,].
Mi1+ET

Let w be the apparent weight of the flask when filled with
water at the temperature s; s, T being nearly equal; Vg, V,
the capacities of the flask at the temperatures 5, T e the
cubical expansion of the substance of which the flask is made
for one degree of heat. Then W — X + z' will be the weight
of a volume v, of water at 5. V=V {1-e(s-T)};
~ {1-e(s - T)} (W - x + 2') will be the weight of a volume
vy of water at §°% Hence, the specific gravity of water at
8% divided by the specific gravity of the air at T° under the
pressure I1,

W-Xx+2

-{l—e(S—T)} 7

(Y -x)

m
X e
cfi-etsomy (10 ez VT
T i1+ET Y-X
very nearly.

When the expansions of the air and of water are accurately
known, the ratio of their specific gravities at any other tem-
peratures may be readily computed. '

116. To determine the weight of a given volume of water.

Let a sphere, cube, or cylinder, of known dimensions, be
weighed in air and in water. Let v be the volume of the
sphere; W its apparent weight in air; X its apparent weight

when suspended in water; U the weight of the air displaced

by it; W', X’ the weights of the air displaced by the weights
W, X. Then, weight of the sphere — weight of the air dis-
placed by it = W — W'; weight of the sphere — weight of the
water displaced by it = X — X'; therefore, the weight of the
water displaced by the sphere, or the weight of a volume v
of water = W - X + U - W + x".

117. To compare the specific gravities of a solid and a
fluid, by weighing the solid in air and in the fluid.

Let the solid be suspended by a fine wire, or a hair, from

the pan of a balance, as in (fig. 50), and let W be the weight of
11
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the solid in air, X its apparent weight when suspended in the
fluid. Then (22), neglecting the weight of the air displaced
by the solid, )
weight of the solid ~ weight of the fluid displaced = X ;
therefore, weight of the fluid displaced = W - x;

therefore, since W and W — X are the weights of equal volumes
of the solid and of the fluid,

S.Geoid w
SG.Aud wW-x'

When great accuracy is required, the weight of the air
displaced by the solid must be taken into account.

Let W be the weight of the solid in air, U the weight of
the air displaced by it; X the apparent weight of the solid
when suspended in water. Then,

weight of the solid - U = W;
weight of the solid - weight of the fluid displaced by it = X ;
therefore the weight of the solid = w + U,
and the weight of the fluid displaced by it = w -~ X + T;;

. §.G.solid W+ U
" 8.Gflvid wW-X+TU’

118. When the weight of the solid is less than the weight
of the fluid displaced by it, it must be fastened to another solid
of sufficient density and magnitude to cause both to sink. Let
X = apparent weight of the denser solid in the fluid — apparent
weight of both solids in the fluid = weight of the fluid displaced
by the rarer solid — weight of the rarer solid ;

therefore the weight of the fluid displaced = W + X ;
| S.Guolid_ _w
" 8.Gfluid w+x’

If we take into account the weight of the air displaced,

weight of the solid — weight of air displaced by it = Ww';
weight of the fluid disp®. by the solid — weight of the solid = X;
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therefore weight of the fluid displaced = W + U + X

. §.G.solid W+ U
CS.GAuid WH+U+X

119. To compare the specific gravities of two fluids by
weighing the same solid in each. .

Let w be the weight of the solid in air, X its apparent
weight when suspended in the fluid (4), Y its apparent weight
when suspended in the fluid (B). Then, neglecting the weight
of the air displaced by the solid,

weight of the solid— weight of the fluid (4) displaced by it =X ;
weight of the solid— weight of the fluid (B) displaced by it= v ;
therefore weight of the fluid (4) displaced = w - X,
and weight of the fluid (B) displaced = w - .

W - X, W - Y are the weights of equal volumes of the fluids
(4) and (B) respectively ;

. §.G.fluid (4) _wv-x
" §.GAuid(B) w-Y’

If the weight of the air displaced by the solid = U,
weight of the fluid (4) displaced = W + U - X;
weight of the fluid (B) displaced = W + U -~ Y ;

. §5.G.fluid (4) _w+u-Xx
" §.GAuid(B) wW+U-Y'

120. To compare the specific gravities of two fluids (4)
and (B) by weighing equal volumes of each.

Let X be the weight of a flask filled with the fluid (4) and
closed with a ground stopper; Y the weight of the flask simi-
larly filled with the fluid (B). W the weight of the flask.
Then, neglecting the weight of the air contained in the flask,

weight of the fluid (4) contained in the flask = X - w;

weight of the fluid (B) contained in the flask = y — w.

X - W, Y — W are the weights of equal volumes of the fluids
{4) and (B) respectively; -
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. S.GAluid(4) x-w
" 8S.GAuid(B) Y~-W'

If the weight of the air contained in the flask = U; then,
weight of the fluid (£) contained in the flask = X - W + U ;
weight of the fluid (B) contained in the flask = Y — W + U;;

. S.Gfuid(4) Xx-w+U
" S.Gfluid(B) Y-w+U'

121. The specific gravity of a solid broken into small
fragments may be found in the following manner.

Let w be the weight of the solid in air; x the weight of
a flask filled with the fluid ; Y the weight of the flask contain-
ing the fragments of the solid, and filled up with the fluid.
Then, neglecting the weight of the air displaced by the solid,
weight of the solid—weight of the fluid displaced by it = ¥ - X;
.. weight of the fluid displaced = W - ¥ + X ;
. 8.G.solid w
T SGfuid  Weyv+x
If the wéighf of the air displaced by the solid = U,

S.G.solid W4 U
S.Gflud wW-Y+X+U0'

Tae Coumon Hypromxrer. (Fig. 51.)

122. E, D are two hollow spheres having their centers
in the axis of a graduated cylindrical stem EC. D is loaded
with lead so that the center of gravity of the whole instrument
may be below the center of gravity of the fluid displaced by
the spheres E, D.. The instrument is used in comparing the
specific gravities of fluids.

Let W be the weight of CED, v its volume; K the area
of a section of the stem EC. When it floats vertically in
a fluid (4), let the surface of the fluid meet EC in P; and
when it floats vertically in a fluid (B), let the surface of the
fluid meet EC in Q. Then, since v - K.CP, and v - K.CQ
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are the volumes of the fluids (4) and (B) displaced by the
instrument, and the weight of a floating solid is equal to the
weight of the fluid displaced by it (21),

W = {§.G.fuid (4)} (v -K.CP);

W= §{S.G.fluid (B)} (V-K.CQ);
~ §.G.fluid (4) V-K.CQ
"S.G.fud(B) v-K.CP

Sixes' HYDKOMETEK. (Fig. 52.)

123. 'This instrument differs from the preceding in the

form of the stem EC, which is a very thin flat bar, and in "

having a series of weights capable of being fixed on the stem
connecting E and D, of such magnitude that when DC floats
with nearly the whole of its stem above the surface of the fluid,
the addition of one of the weights causes it to sink nearly to C.

Let v be the volume of the instrument, W its weight; k

* the area of a section of the stem EC. When it floats in a

fluid (4), let X be the weight at D, P the surface of the fluid ;
when it floats in a fluid (B), let Y be the weight at D, Q the
surface of the fluid; and let R, § be the volumes of the weights
X, Y. Then,

the weight of the fluid (4) displaced = W + X :
the weight of the fluid (B) displaced = W + Y ;
the volume of the fluid (4) displaced = v + R — X .CP;
the volume of the fluid (B) displaced = v + § - K. CQ;
“ W+ X=4{S.G.fluid (4)} (v+R~-K.CP);
W+ Y={S.G.fluid (B)} (Vv+5-K.CQ);
.. S.G. ﬂmd(A) (W+X)(V+5-K.CQ)
S.G.fluid(B) (W+Y)(V+R-K.CP)’

Nicrorsox's HypromeTER. (Fig. 53.)

124. EF is a hollow cyhnder. C a dish supported by
2 slender wire CE placed in the axis of EF; D a hea\y dish
suspended from the lower extremity of EF. This instrument
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is used in comparing either the specific gravity of a fluid with
that of a solid, or the specific gravities of two fluids with each
other. '

(1) To compare the specific gravities of a solid and a
fluid.

Let z be the weight, which placed in C, causes the in-
strument to sink in the fluid till the surface of the fluid meets
EC in a given point H. Place the solid in C and let X be the
weight which must be added, to make the instrument sink to
H. Place the solid in D, and let Y be the weight which must
be placed in C in order to sink the instrument to H. Then,
neglecting the weight of the air displaced by the solid,

weight of the solid = 2 - X ;
weight of the solid — weight of the fluid displaced = apparent
weight of the solid in the fluid = z -~ Y ;
*. weight of the fluid displaced = ¥ - X ;
. 8.G.s0lid z-x
" 8.6.fluid Y-x~
If the weight of the air displaced by the solid = U,
weight of the solid = 2 ~ X + U;
*. weight of the fluid displaced = Y - X 4+ U;
. §.G.solid zZ-X+7T
" S§.G.flud vy-x+U’

(2) To compare .tbe specific gravities of two fluids (4)
and (B).

Let w be the weight of the hydrometer, x the weight
which must be placed in C to sink the instrument to H in the
fluid (4); Y the weight which must be placed in C to sink the
instrument to H in the fluid (B). Then,

weight of the fluid (4) displaced = W + X;
weight of the fluid (B) displaced = W + Y.
The volume of the fluid displaced is the same in both cases ;

. 8.G.fluid(4) WwW+Xx
" S.G.fluid(B) w+Y'
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Ml-:xxx.n's, ok Hare's HyproueTeR. (Fig. 54.)

125. CD, EF are two vertical glass tubes communicating
at E and F with a cavity G, which is connected with some
contrivance for partially exhausting the air contained in it.
C and E are immersed in cups containing two fluids (4) and
(B), the specific gravities of which are to be compared. If the
air in G be now partially exhausted the fluids will ascend in the
tubes. Let the fluid (4) ascend to P, and the fluid (B) to Q:
and let the surfaces of the fluids (4), (B) in the cups meet
the tubes CD, EF in C, E. Then, if the atmospheric pres-
sure = T, and the pressure of the air in G = M, (9)

MN-Ma {S.G.fluid (4)}.CP;
II-M={S5.G.fluid (B)}. EQ:
. §.G.fluid (4) EQ
" §.G.fluid (B) CP’
When the tubes are small, the altitudes CP, EQ must be
diminished by the spaces through which the fluids are elevated
by capillary attraction. Or the effect of capillary attraction

may be eliminated in the following manner. Let a, b, be the
capillary elevations of the fluids in the tubes CD, EF'; then,

{S.G.fluid (4)}.(CP - a) = {§.G.fluid (B)} (EQ - b).
Permit some air to enter G, and let P’, Q’, be the extremities
of the columns of fluid in CD, EF; therefore

{8§.G.fluid (4)}.(CP -a) = {§.G.fluid (B)} (EQ -b);

< §8.G.fMid (4)} PP'= {§.G.fuid (B)} QQ';
. §8.G.fluid (4) - QQ’
" §.G.fluid (B) PP

Say’s INSTRUMENT For MEAsUBING THE VoLUMESs oF
Smarr Sorips. (Fig. 55.)

126. PC is a glass tube of uniform bore terminating in
a cup PE having its mouth ground truly plane, and capable of

being closed so as to be air-tight by a plate of glass E; within *

PE is a cup B containing the substance the volume of which is

P
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sought. Take off the plate E, and immerse PC verucull) in
mercury till the surface of the mercury meets the tube in a
given point P; close the cup PE with the plate E, and elevate
the tube PC till the surface of the mercury on the outside meets
the tube in any point C; and let M be the extremity of the
column of mercury within the tube.

Let u be the volume of the space occupied by the air in
PE before the solid was placed in the cup B; v the volume of
the solid ; K the area of a section of the tube PC; A the alti-
tude of the mercury in the barometer ; o the density of mercury.
When the surface of the mercury was at P, the air in EP occu-
pied the space u — v, and its pressure = gak ; when the surface
of the mercury within the tube is at M, and the surface of the
mercury on the outside at C, the air in EPM occupies the space
% — v+ K.PM, and its pressure = go (k — MC) ; therefore (81)

©w-v+K.PM h
Y ) “h-MC’
h-MC
MC

u may be found by a similar process, the cup B being
empty. K is found by weighing the mercury occupying a given
portion of the tube PC. A cubic inch of mercury at 16° weighs
3429§ grams nearly, therefore if the length of the column of
mercury in PC expressed in inches = a, and its weight in grains

=w, w= 3429% (vol. mercury in PC) = 34294.Ka, K being
expressed in square inches.

‘Y V=Y —
"

K.PM.

If the weight of the solid = w, its spec:ﬁc gravity = W,
In this manner the specific gravities of powders and soluble
substances are found, when the other methods, which require
the substances to be immersed in fluid, cannot be used.

Tur Piezometer. (Fig. 56.)

127. This instrunent, by means of which the compressi-
bility of liquids may be exhibited and measured, consists of
a thermometer tube DC open at C, enclosed in a strong glass
vessel EF. CD is nearly filled with the liquid to be examined,
and then a drop of mercury is introduced to keep the liquid

AN
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within the tube separate from the liquid without; EF is then
filled with water, and the required pressure produced by a
piston, which is pressed down by turning a screw G. The

. pressure is measured by means of a gauge AB similar to the

one described in (107), and the decrement of the volume of the
fluid in CD, is deduced from the space through which the drop
of mercury descends, the area of a section of the tube and the
capacity of the bulb D baving been found by weighing the
mercury contained in the bulb and in a given length of the
tube.

The apparent diminution of the volume of the fluid in CD
requires a slight correction for the alteration of the capacity
of D arising from the compressibility of glass.

Tre Hypravric Rax. (Fig. 57.)

128. 4B is a pipe descending obliquely from a reservoir
of water 4, to an air vessel G, into which is inserted the
ascending pipe FH. C is a smaller air vessel; B a large
valve opening downwards; D a valve opening upwards; E
a small valve opening into C.

Suppose the valves B, E, closed by the pressure of the
water in 4B; D closed by its own weight; G, C filled with
air; and FH filled with water up to the level of the surface
of the water in 4. Let the valve B be depressed ; then the
water in AB will move in the direction 4B, and flow out
at B, till the valve B carried upwards by the stream closes
the orifice at B; the water in 4B having its motion thus sud-
denly checked, will exert a very great pressure on the inner
surface of the pipe 4B, and will rush into the air vessel G,
and up the pipe FH, compressing at the same time the air in
G and C. As soon as the water in 4B comes to rest, D
closes, and the pressure of the air in C causes the water in 4B
to recoil till the air in C occupies a larger space than it did .
under the pressure of the atmosphere; at this instant, the '
pressure at B being less than the pressure of the atmosphere,
B descends, and the action of the machine is renewed.

In this manner the water ascends in F'H at each successive
impulse, till it reaches the place to which it is desired to
12
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elevate it. A portion of the air in G and C is taken up by
the water, which absorbs a considerable quantity of air under
a high pressure; to supply the waste arising from thiscause, -
the machine is provided with the valve E, which opens and

. permits the air to enter, during the rccoil of the water in 4B.

Tae Armosrueric Steax Excine. (Fig. 58.)

. 129. 4B is a hollow cylinder communicating with a
boiler by means of a pipe C; B a valve opening downwards
and closed by a spring; ED a pipe leading from a cistern
of cold water E; M a piston connected with one extremity
of a lever LGF; from the other extremity of the lever is
suspended FH, the rod by which the machinery worked by the
steam-engine is put in motion. H is a weight equal to half
the pressure of the atmosphere on the upper surface of M.
An apparatus connected with F'L opens the cock C, when M
descends to B, and closes it when Af ascends to 4. The cock
D is opened in the same manner when M comes to 4, and is
closed again soon after M begins to descend.

Suppose M to be at B, and the pressure of the steam in
the boiler a little greater than the pressure of the atmosphere;
then, when C is opened, the steam rushes into MB, and the
Ppressures upon the upper and lower surfaces of M being nearly
equal, the weight H will cause M to ascend. When M comes
to 4, C is closed, and D is opened ; a jet of cold water issues
into the cylinder and condenses the steam, leaving a vacuum
below M ; and since the pressure of the atmosphere on M is
equal to twice the weight of H, M will descend with a moving
force equal to the weight of H. When M arrives at B, C is
opened again, and M ascends as before.

The water remaining in MB escapes through the valve B,
which is forced open by the pressure of the steam when first
admitted.

Warrs Steam ExciNe. (Fig. 59.)

130. 4B is a hollow cylinder closed at both ends. LGF
is a lever, one end of which is connected with the piston M,
by a rod 4M passing through a steam tight collar at A; the
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other end of the lever is attached to the crank of a fly wheel.
D is a vessel, called the condenser, surrounded by cold
water ; RS a tube connecting AB with the boiler and with D.
At R and § are placed valves connected with the fly wheel in
such a manner that when Af comes to 4, a communication is
opened between AM and the boiler, and between MB and the
condenser, and is closed again when M has described one third
of AB; and when M comes to B, a communication is opened
between M B and the boiler, and 4AMf and the condenser, and
closed, as in the former case, when Af has described one third
of BA.

Suppose M to ascend from B to 4, the space below M
being filled with steam from the boiler; as soon as M arrives
at 4, the communication is opened between MB and D, and
the steam in M B flows into D, and is there condensed leaving
a vacuum in MB; at the same time, a communication being
open between AM and the boiler, steam flows into 42, and
M is forced downwards by the full pressure of the steam,
during one third of its descent, and after the communication
between AM and the boiler is cut off, by . the diminished
pressure of the steam in the cylinder. In the same manner,
when M arrives at B, a vacuum is produced in 4M by the
condensation of the steam, and M is pressed upwards by the
steam admitted below.

The condensation of the steam in D is promoted by a
jet of cold water, which is removed as fast as it collects by

a pump P.

A description of the contrivances for regulating the supply
of steam and water, and for making the extremity of the piston
rod describe a curve approaching to a straight line; as well
the enumeration of the advantages of this construction over
the atmospheric engine, would be improper in this place, on
account of its length.

Tre Hicr PressurE STEaM ENGINE.

131. The construction of the cylinder, piston, and valves
in this engine is the same as in Watt’s engine. The steam has
a pressure many times greater than the pressure of the atmo-
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sphere, and instead of being condensed after each stroke of the
piston, it is permitted to escape into the open air.

Suppose A to ascend from B to 4, the space MB being
filled with steam from the boiler; as soon as M arrives at 4,
a communication is opened between MB and the air, steam
from the boiler flows into 43/, and M is forced towards B by
the excess of the pressure of the steam above the atmospheric
pressure. In the same manner when M arrives at B, a com-
munication is opened between 4M and the atmosphere, and M
is forced towards 4 by the excess of the pressure of the steam
admitted into MB above the atmospheric pressure.
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Art. 132. THE propositions which form the subject of

(8), (4), are sometimes illustrated by a feigned experiment, in
the following manner.

Let a vessel ABCD (fig. 60) closed on all sides, and ex-
actly filled with fluid, be placed with the side 4D horizontal,
and therefore free from any pressure arising from the weight of
the fluid. At E and F make two equal orifices, and apply
any pressure to the surface of the fluid at £ by means of a
piston ; then, in order to prevent the fluid from escaping at F,
another piston must be applied and pressed with exactly the
same force as that at E. Thus the pressure communicated
perpendicularly downwards at E, has, by the intervention of
the fluid, been made to act with the same force perpendicularly
upwards at F. If the orifice F, instead of being made in the
upper horizontal surface of the vessel, be made at any point G
in the inclined side, and a force applied ‘sufficient to counteract
the effort made by the fluid to escape; then, if any pressure
be applied at E, it will be found, as before, that an additional
pressure, equal to that at £, must be applied at G perpendicular
to the side CD, to preserve the equilibrium. e may conclude
therefore that a force impressed on a given surface in any part
of a fluid, produces an equal pressure on an equal surface in
any other part of the fluid.

133. To find the pressure of a fluid on any surface.

Suppose the surface (S) divided into an indefinite number
of portions 4, B, C, &c. so small that every point of any one
of them may be considered as at the same perpendicular depth
below the surface of the fluid; and let their respective perpen-
dicular depths be a, b, ¢, &c.; then (9) the pressure of the
fluid on any one of them 4 = gpAa, p being the density of the

e 00 g v 10 w0n S
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fluid ; similarly, the pressure on B = gp Bb, &c. ; therefore the
sum of the pressures

=gp(4a+ Bb + Cec + &e.).

But if the depth of the center of gravity of § below the surface
of the fluid = X'; then, since 4, B, C, &c. may be considered
as bodies the perpendicular distances of which from the surface
of the fluid are a, b, ¢, &c., (Snowball’s Mechanics, 154.)

Ada+ Bb+Ce+ &c.=(A+B+C+ &c) X=SX; |
- the pressure of the fluid on §' = gpSX.

134. A vessel of the form of a cone with its base down-
wards, is filled with fluid ; to compare the pressure on the base
of the vessel with the weight of the fluid contained in it.

Let the cone be geuerated by the revolution of the right-
angled triangle 4BC (fig. 61) round AC, p the density of the
fluid ; then, the area of the base of the cone = w.CB?*, and the
depth of its center of gravity below the surface of the fluid
= AC; therefore the pressure on the base of the cone = gpr.
AC.BC"; and the weight of the fluid in the cone = }gpx AC.
BC*; therefore pressure on the base of the cone = 8. (weight
of the fluid).

Since the pressure on the base of a vessel filled with a
given fluid, depends only on its area, and the depth of its
center of gravity below the surface of the fluid, the pressure
on the base of the cone BAB’ (fig. 61) is equal to the pressure
on the base of the cylinder BAA'B’ (fig. 62), or the pressure
on the base of the truncated cone BAA'B’ (fig. 63): the area
of the base and the depth of its center of gravity below the
surface of the fluid being the same in each case.

135. A hollow sphere is just filled with fluid ; to compare
the pressure on the internal surface of the sphere with the
weight of the fluid.

Let a be the radius of the sphere; then, the area of the
surface of the sphere = 47 a®, and the depth of its center of
gravity below the surface of the fluid = a, therefore the pressure
on the surface of the sphere = gp4ma®, and the weight of the
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fluid contained in the sphere = go$wa*; therefcre the pressure
on the surface of the sphere = 3 (weight of the fluid.)

. C/ 136. To find the center of pressure of the triangle 40B

(fig. 64) having the side 04 perpendicular to the surface of
the fluid, and the side OB in the surface.

Draw HR parallel to BO; and let X, Y be the distances
of the center of pressure from OB, OA respectively ; OH = x.
Then, (14)

XLz =L Yijz=[l=y;

the integrals being taken between the limits corresponding to
the boundary of the figure.

o HR 1'9
fr=2y+C; _[ z-x.HR-og(,___)
y

04
a° 2! o
Sle-42) =5 - 559+ €

N Y Y .
[ (o-53) =5 - 505~ 4o+

*. .J,x, between the proper limits, = 10B.04".

o HR o)
- ; - . - " .z"—— ;
f,ot= 2ty + C { 2= s HR op( 0.4)

z° 2 2!
[ -%4) =5~ 164*

0 .04 P o4’ 04
. e_ 22T Rloq.
f. ( ) "8  s04 n04;

~ J.Jy#*, between the proper limits, = 3, 0B.0A4°
hxy=32y'+ C;
mey = lz. HR'= $ BO" (.v - 201; + O_.ji) 3
9 P\ 2 2 o
./'.(x——O—A-EI’) -—2- —W+W+ C;
t/—“(.r 25 2 ) _os£ 204 o4

- — S e = 2,
o4t ox 2 ~s04 tsop~no4

-

— e n e e S o .
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- Jof,xy, between the proper limits, = 3, 04*0B";
s X=304, Y=}0B.

137. To fiud the center of pressure of a semicircle ORA
(fig. 65) having its diameter 04 perpendicular to the surface
of the fluid, and the extremity O of the diameter in the surface
of the fluid.

Let the plane of the semicircle meet the surface of the fluid
in Oy. Draw HR parallel to Oy; and let 04 = 2a, OH = @.

o .HR

Jx =2y + C; j z2=2.HR = z+/(2az - 2°);
Yy

o[h.r Vv (@az -2 = ;.a’;

. [eJ,x, between the proper limits, = ;—ra'.

o .HR
Jy&?= 2y + C; { 2'= 2" HR = 2* 1/ (222 - &%) ;
°y

fata/(2ax - 2°) = C - } & (a2 - #)}
-$-4a(2az - N+ fa* [2a0 -
_/; &t/ (202 - 2*) = g wa';
.. [eJy=°, between the proper limits, = §xa'.

fxy=3ay’+ C; ofmzy = {2HR' = }o (2ax - 2*);
y

n .2 .
f(2a2*— 7*) = 3a2’- }a'+ C; f (2a2*- o) = §.a*;
R DA between the proper limits, = §a".

Therefore X = -s-a, Yeo-—.
4 L

138. To find the center of pressure of the sector 4OB
(fig. 66) having its center O in the surface of the fluid, and
the radius OA perpendicular to the surface.
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Let the plane of the sector meet the surface of- the fluid in
Oy. Draw the radii OR, OS; and with the center O describe
the arcs PP, QQ'. Let the density of the fluid = p, O4 = a,
AOB =a, OP =1, PQ =3r, AOR = 6, ROS= 36.

Then '
d, (press. on PP'0) dr = press. on PQ = gpr* cos 6.30.8r ult. ;

0 & a)
press. on ROS = gp cos .46 f r=gp eosO.SO.; H
dy(press. on AOR) 36 = press. on ROS = }gpa* cos§.36 ult. ;
press. on 40B = &gpa’y‘cos 0 = }gpa’sina.
[

d, (mom. press. on PP'O round Oy) ér = mom. press. on PQ
round Oy = gpr* (cos §)°.3r.86 ultimately ;

- [
mom. press. on ROS round Oy = gp (cos 0)°.80 f ”

a‘
=-gp (cos9)'.39;—; :
d, (mom. press. on A4OR round Oy).86
= mom. press. oo ROS round Oy = }gpa’ (cos6)’.46 ult. ;
mom. press. on A0B round Oy

- }gpa't[.(cos 0) = gpa' (2a + sin2a).
0

d, (mom. press. on PP'O round 04).dr
= mom. press. on PQ round OA = gpr* sin @ cos §.87.36 ult. ;
mom. press. on ROS round OA

=gpsing cosO.397.P= gpsind.cos0.80 }a';

d, (mom. press. on AOR round 04) é6
= mom. press. on ROS round 04 = }gpa* sin 6 c0s0.56 ult.;
mom. press. on 40B round 04

0.8
= o i = ! (sin a)*;
igpa/;smecoso }gpa' (sina)
13
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o X.}gpa*sina = pgpa' (2a + sin éa),
Y.} gpa*sina = }gpa' (sina)’;

139. A hemispherical bell is placed with its mouth down-
wards on a horizontal plane, and water is poured into the bell
through a hole in its vertex; to find how high the water will
rise without lifting the bell. ‘

Let BAB (fig. 67) be a section of the bell made by a
plane through its axis 4C, BCB a section of the horizontal
plane, PHPF’ a section of the surface of the water. Draw BQ
parallel to 4C meeting HP in Q; and let p be the density of
the water, W the weight of the bell. The pressure of the water
on the interior of the bell, estimated vertically upwards, is equal
to the weight of the superincumbent column of fluid, or the
weight of a quantity of fluid of the same bulk as the solid
generated by the revolution of BPQ round 4C = 4xgp HC*;
and when 4w gp HC*= W, the weight of the bell is sustained
by the pressure of the water.

-

140. A hollow sphere just filled with fluid, is divided into
two parts by a vertical plane through its center; the two
hemispheres are held together by ligaments at their highest
and lowest points; to find the tensions of the ligaments.

Let the circle 4PQ (fig. 68) be the section of the sphere
made by the vertical plane; P, Q, the highest and lowest points
in the circle 4PQ, C its center, K its center of pressure, G the
center of gravity of one of the hemispheres. Then, (17) the
pressure on each hemisphere resolved in a direction perpen-
dicular to 4PQ, is equal to the pressure on the circle APQ;
and it acts in a line passing through K'; and the resultant of
the vertical pressure of the fluid on either hemisphere will not
be altered if we suppose the fluid in the hemisphere to become
solid ; it will therefore be equal to the weight of the fluid in
the hemisphere, and will act downwards in a vertical through
G: Hence if P, Q, be the tensions of the ligaments at P, Q
respectively, P + Q = pressure on 4PQ; and P.PQ = (pres-
sure on APQ).KQ + (weight of fluid in hemisphere).CG.
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If the radius of the sphere = a, and the density of the
fluid = p, the pressure on APQ = gpwa’, weight of fluid in
hemisphere = gp§ xa’, CG = §a, and PK = }a; .. KQ = fa;

P+ Qugpxna’, P.2a=gpwa’.fa+gpina.ga;
s P = *gp,ra’, Q - %gp‘lras. .

141. A rod 4B (fig. 69) of uniform thickness, suspended
by a string EL, rests with one end immersed in a fluid ; to find
AP the portion of the rod immersed, and the tension of the
string.

Let x be the area of a section of the rod, W its weight, G
its center of gravity, p the density of the fluid. . Bisect 4P
in F; and through F, G draw FM, GN, vertical. The re-
sultant of the pressure of the fluid on the rod = weight of the

fluid displaced = gpx.4AP; and it acts in the line F.M; the
other forces are W acting in GN, and T" in EL. Therefore, (22)

T+gpx.AP=W; gpx.AP.FE= W.GE;
W.GE

gpx

. APP—~2A4E AP 4+ 2

=0;
from this equation 4P and therefore T' may be found.

142. A ship sailing out of the sea into a river, sinks
through the space b; on throwing overboard a weight P the
ship rises through the space c; to find the weight of the ship.

Let p, o be the densities of fresh and salt water respectively,
A the area of the plane of floatation of the ship, W the weight
of the ship, V the volume of the salt water displaced by it ;
then, (21) W =goV, and the volume of the fresh water dis-
placed at first= V40435 ... W=gp (V+b4); and the volume
of the fresh water displaced after the weight P is thrown over-
board = V4 (b=c)4d; .. W=-P=gp{V +(b-c)4}.

b

Eliminating 4, V, we obtain (1 - £) W= ;P.
. a

143. A triangular prism floats with its axis horizontal,
and one edge immersed ; to find its positions of equilibrium.
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Let RSD, AB (fig. 70) be sections of the prism and of
the plane of floatation, made by a plane perpendicular to the
axis of the prism, passing through G its center of gravity.
Let W be the weight of the prism, 2 the length of its axis,
p the density of the fluid. Draw GE perpendicular to RD,
GF perpendlcular to SD. Take PD = §AD QD = §-BD
and bisect PQ in H. Then H is the center of gravity of the

“fluid displaced ; therefore (21) GH is perpend:cula.r to 4B or

PQ; and 1gph.4AD.BD.sin D= W.
PG*= DG*+ PD*-2ED.PD,
QG*= DG*+ QD*-2FD .QD;
and PG = QG, for PH = QH, and GH is perpendicular to PQ;
. PD*- QD'-2ED.PD +2FD.QD =0;
. AD*= BD*-~3ED.AD + 8SFD.BD =0;
2w )
gphsin D.4AD’
6FD.W sW?
e T e yeyryemy e Rl
gph sin D g p'k* (sin D)

The last term of this equation is negative, and therefore
one root of it is negative; but the nature of the question ex-
cludes all negative values of 4D and BD. “Hence, there can-
not be more than three positions of equilibrium as long as the

same edge is immersed. All values of 4D greater than RD,
and of BD greater than SD are likewise inadmissible.

-and BD =

. AD'-38ED.AD*+

144. Two equal rods RD, SD, (fig. 71) meeting each
other at right angles, float with the angle D immersed ; to find
their positions of equilibrium. .

Let G be the center of gravity of the rods; P, Q, the
middle points of the portions immersed; GR perpendicular to
DR; GS perpendicular to DS; GH perpendicular to PQ;
HN perpendicular to RD; 2¢ the sum of the lengths of the
immersed portions, when the weight of the fluid displaced is
equal to the weight of the rods; RD=e; PD=a; QD=b.
Then, a + b = c; and the center of gravity of the fluid displaced
must be in GH, it must also be in PQ, therefore H is the center
of gravity of the fluid displaced ;
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_b_PH_PN  a+b PD . &
e QH DN' " "4 " ND’ "c'

The equation to PQ referred to the axes DR, DS, is "—b, + ; =1;

the co-ordinates of G are e, e, therefore the equation to GH
is b(y—e)=a(x-e€); and H is the intersection of GH and
<. (b*+a") DN=ab*+(a*~ab)e; ... (B+a*)a=ch®+(a-b)ec:
. {e-a)+atla=c(c—a)+(2a-c)ec;
‘. 2a*-8ca’+ (8c—2¢)ac—-(c-e€)c*=0,

one root of this equation is ¢, the other two are
BHe+v/62-9} He-v/G2 -9}

145. To find (M) the metacentre of the prism RDS
(fig. 70), the prism belng inclined in the plane RDS.

The mometit of ivertia of the plane of floatation round an
axis through its center of gravity perpendicular to RDS =
4.14B 4B. h and the volume of the fluid dlsplaced- 3h.4D
.DB.sinD; (26)‘} h.AD.DB.sin D.HM = 4 AB*h;

4B

- HM = GAD DBsnD’
146. To find the metacentre of a cone floating with its
axis vertical.

Let DC (fig. 72) be the axis of the cone, meeting the
plane of floatation in C, CA the radius of the plane of float-
ation, H the center of gravity of the fluid displaced. Then
DH = $DC; the moment of inertia of the plane of floatation
round a horizontal axis through its center of gravity C=1=xAC*;
and the volume of the fluid displaced = §74C*. DC; .. §x4C*
.DC.HM = }n AC*;

DC*+ AC* 3
DC  *DC’

. HM-%‘;—C;; DM=}

———— .
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147. A conical vessel partly filled with fluid, floats in the
same fluid-with its axis vertical ; to find whether the equilibrium
of the vessel is stable or unstable.

Let DM (fig. 78) be the axis of the cone making a very
small angle with the vertical ; C, ¢ the points in which it cuts
the plane of floatation and the surface of the fluid within; H,
h the centers of gravity of the fluid displaced and of the fluid
contained in the cone, when the axis of the cone was vertical ;
M, m the points in which verticals through the centers of
gravity of the fluid displaced and of the fluid within ultimately
intersect DM; G the center of gravity of the cone. The
weight of the fluid displaced, the weight of the cone, and the
weight of the fluid contained in the cone, act in parallel lines
through M, G, m, respectively. And the pressures of the
exterior and interior fluids will tend to diminish or increase
the inclination of DC according as (weight of fluid b Da).mG
is greater or less than (weight of fluid displaced).MG.

weight of fluid b Da : wexght of fluid dnsplwed =cD': CD*;
therefore the equilibrium of the cone will be stable or unstable
according as ¢D*(GD.cD -$aD") is gruter or less than
CD*($AD*-GD.CD).

148. An open vessel containing fluid is made to revolve
round a vertical axis with the angular velocity a; to find the
form of the surface qf the fluid.

Let the axis of revolution be made the axis of #; and let =
be measured downwards. The forces on the fluid at any point
P whose co-ordinates are z, y, %, are, g acting downwards, and
. a*4/ (" + ¢%) acting in the direction of a perpendicular from

P on the axis of revolution; this force may be resolved into

z
2 2+ ) —————
VD T
the axis of x, and o'y, in a direction parallel to the axis of y.
We have then, X=a'z, VY=d'y, Z=g; .. d,p=pa'z,
dyp = pa’y, d.p = pg;
pP=p {%ag(.t"+ v) + gz} + C.

» or a’, in a direction parallel to
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Let the surface of the fluid cut the axis of = at the depth ¢
below the origin ; and let I1 be the pressure of the atmosphere.
Then, = pge+ C; ~.p-M=p i’ (@ +y)+g(x-0)}.

At any point in the surface of the fluid p =TI, therefore
the equation to the surface of the fluid is

O0=a'(#+y) +28(x-0);

the equation to a paraboloid generated by the revolution of -a
parabola the latus rectum of which = 2g=a’

149. A hollow parallelopiped OF (fig. 74) just filled with
fluid, revolves round the edge OC, which is vertical, with the
angular velocity a; to find the pressure on the side BF, and
the center of pressure of the side BF.

Let OA=a, OB=b, OC=c; 04, OB, OC, the axes
of z, y, =, respectively; p the pressure at the point (z, y, ®).
Then, p = p{da*(2*+y") +g2} +C:at O p =0, r=0,y=0,
2=0; .Cm=0;

. p=pitat(@+y) +go}.

Draw HPR, KQS, parallel to BD; MP, NQ parallel
to BE; and let BM =2, BH = x.

The pressure at P = p{} (z*+ }*) + g%} ;

the pressure on PQ = p {3 (+*+ b.’) +gz} MN.HK ult.

the pressure on XP = p {} (}o*+ b'z) + g2} . HE ult.

the pressure on KR = p {1(}a*+ b'a) + gwa} . HK ult.

the pressure on BR = p { (}a’+ b'a) = + §gs'a};

the pressure on BF = p{}(}d*+ b'a)c + $gc'a}.
mom. press. on PQrd. Bb-p{%a’(.r"+b’)+gs}.z-.MN.HKult.
mom. press. on KP = p {}a’(}2* + b*2%) + 3 g=2*}. HK ult.
mom. press. on KR =p {3’ (}a'+ 4b°a’) + 3 gza*}. HK ult.
mom. press. on BR = p {1a*(}a'+ 4b'a®) » + Jg2*a’};
mon). press. on BF rd. BE = p{}a® (}a'+ }b'a’) ¢ + }gcta?}.
mom. press.on PQrd. BD=p}{da'(2*+b*)+gz}2. MN. HK ult.
mom. press. on KP = p{la*(} 2+ b*x) + gzx}z. HK ult.
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mom. press. on KR = p{}a*(}a’+ b’aj +gza}s. HE ult.
mom. press, on BR = p{}a’ ({a*+ b'a) S+ }gs’a};
mom. press. on BF rd. BD = p{}a*(}a°+ b'a)c*+ Jgca}.

Hence if X, Z, be the co-ordinates of the center of pressure
of BF, referred to the axes BD, BE,

X {$a*(§a* + b)) + dgc} = da' (0 + 4b%a) + }sca.
Z {}a*(}a* + V') + §gc} = }a* (Ja* + ) e + Jgc*.
150. A solid floating in equilibrium is slightly elevated

or depressed, and then left to itself; to determine its motion,
without taking into account the resistance of the fluid.

Let ADB (fig. 14) be the position of the solid at the time ¢,
CP a vertical meeting the surface of the fluid a Cb in C and the
plane of floatation 4PB in P, PC=2, a the space through which
the solid was elevated or depressed, A the area of the plane
of floatation, ¥ the volume of the fluid displaced by the solid
when at rest, p the density of the fluid. The moving force on
the solid in the direction’ PC will be the difference between its
weight and the weight of the fluid displaced = gpA.CP, and
the mass of the solid = p ¥, therefore the accelerating force, tend-

ing to diminish #, on the solid in the direction PC = gﬁr.cp 3
die = -g%w, 2d,0d}2 = -gfyzad,}a, (de)' = C - g%,s;

4
dix =0 when 2=a; .'.'O-C-g-‘; a; .. (d.z)’-gﬁy(a’-r').

If we reckon ¢ from the time when # = a,

wi=ge=-~ G2) o
st \/(EV]) cos"'s.

When =0, t = »\/ (g_VA) g ,» hence the time of an oscillation

/().
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151. To determine the small oscillations of the solid DC
(fig. 15) after its equilibrium has been slightly disturbed, as
in (25), the solid being symmetrical with respect to the plane
4ADB.

Let the figure represent the position of the solid at the
time £: and let p be the density of the fluid, K the radius
of gyration of the solid revolving round G in the plane 4DB,
HG = ¢; then, retaining the notation of (26) the moment of
the pressure of the fluid, tending to turn the solid round G in
the direction FMG,

=-gpV.GM.0=gpV. (k"T’, -c) 6.

This pressure tends to diminish 6, and the moment of inertia
of the solid round G in the plane ADB = K*pV;

. g (124d_
..d,o-_f,.(la’, c).o.

Hence, as in the preceding problem, if 6 = a, when 4,0 = 0,
K

t= \/ (k’ A c) } CcOos s
{" v
K
y .
For the determination of the motion when the solid is not

symmetrical with respect to 4DB, the reader is referred to
Mr Moseley’s Hydrostatics (88).

and the time of an oscillation =

152. Example of the method of finding the height of a
mountain by barometrical observations.

According to Gen. Roy (Phil. Trans. 1777), on the 7th of
July, 1775, the mean height of the mercury in a barometer on

Carparvon Quay was 80,151 inches, the temperature of the -

mercury 15%5, and that of the air 15°,5. On the top of Snow-
don the height of the mercury was 26,474 inches, the tem-
perature.of the mercury 11%6, the temperature of the air 9°5.

The latitude of Snowdon .is nearly 53°. Here h = 30,151, .

k= 26,474, 8 = 15,5, t m 11,6, S = 15,5, T = 9,5, \ = 58°,
14

T R
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log,oh - log,k = 0,0564821, 0,000078 (s — t) - 0,0008042,
120 (8 + T) = 83000, 155c082\ = - 48.

Hence, (44) if « be the altitude of Snowdon above the Quay
in feet, ¥ = 68302.(0,056178) = 8555,67. The value of @ de-
termined geometrically was 8555. : .

153. Two plates of glass meeting in the vertical Cy
(fig. 75), and making a very small angle ¢ with each other, are
immersed in water; to find the figure of the water elevated
between them by capillary attraction.

Let one of the plates meet the surface of the fluid between .

them in PQ, and the plane of undisturbed surface in Ce.
Draw PN parallel to Cy. Let CN = 2, PN =y, the distance

between the plates at P = ex; therefore (60) exy -g nearly,

the equation to a rectangular hyperbola of which Cz, Cy, are
the asymptotes.

154. A wire, the area of a section of which = «, can just
sustain a weight 17 without breaking; to find the greatest
pressure that can be applied to a fluid contained in a hollow
cylinder of the same substance as the wire, without bursting it,
a being the radius of the cylinder, and e its thickness.

Let ML (fig. 25). be a portion of the cyhnder, MK, HL
perpendicular to its axis; MH, KL parallel to its axis; p the
pressure of the fluid. The area of the section MH = ¢. MH ;

therefore it can sustain a tension — A W; and (61)

e MH

Ka

p.MH = W, o p=—W.
Ka

A pressure 2—: W might be applied to a hollow sphere of
x ;
the same radius and thickness without bursting it.
155. To find the time of emptymg a vertical pnsm or
cylinder through a small orifice in its base.

Let A be the area of the base of the prism, x the area of
the orifice, x the depth of the orifice below the surface of the

e A G
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fluid at the end of the time ¢ from the begmmng of the motion.
Then, (71)

v/ (28)xd,t = —%: - »‘/(2g)xt= C-24Vx;

if the depth of the orifice below the surface of the fluid was a
when ¢ = 0.

o-C-_s-A\/;; \/(ﬂg‘)x.t-QA(\/-—\/;);

and the whole time of emptying

<V (7)
'e g/

156. To find the time of emptying u hollow sphere
through a small orifice in its vertex.

Let a be the radius of the sphere, « the area of the orifice,
x the depth of the orifice below the surface of the fluid at the
end of the time ¢ from the beginning of the motion. The area

of the surface of the fluid at the end of the time ¢ =7 (262-4");

o z(Raz-2")
o e “(Qg)Kd,t-—-—Vz_
“ 4/ (28)xt = C — 7 (faat - 3 2i);

when t =0, x =2a; .. o-C—{% 2xal;

< 4/(®) xt=}-§ra=—-§ra.v‘+§-wz‘;
: 16ral S
15¢4/(8) "

157. To determine the motion of a fluid oscillating i in an
inverted syphon PDB (fig. 76) of uniform bore.

Let P, Q be the extremities of the column of fluid at the
end of the time ¢ from the beginning of the motion; 4, B,
the extremities of the column of fluid when at rest; a, 8
the angles between 4P, BQ and the vertical MN; 4P wms,
x the area of a section of the tube. The moving force on the
fluid = gpx . MN = gpx (AP cosa + BQ cos 3)

= gp (cosa + cvs B) AP.

= —x(2az! - at);

and the time of .emptying the whole sphere =
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* The mass of the fluid = px.ADB, and, since the bore of the
tube is uniform, every part of the fluid moves with the same
velocity, therefore the effective accelerating force at any point

tending to make the fluid return to its position of eqnilibrium '

AP

DB’ =0:

. d}s+ g (cos a + cos )

ADB
& (cosa + cos )

= g (cosa + cos ) Yo

and the time of an oscillation = o

158. A welght is raised by a rope wound round the axle
of an undershot wheel ; to find the velocity of the wheel.

Let K be the area of each float-board ; .u the velocity of the
wheel ; v the velocity of the stream; a the radius of the wheel ;
b the radius of the axle; W the weight. The relative velocity
of the stream is v — u, and, therefore, the force with which it
impels the wheel = 3 pX (v — u)’. And when the velocity of
the wheel is uniform, this force is in equilibrium with the
weight W; .. bW=adpK (v -u)'.

The work performed by a water wheel is measured by the
product of the weight lifted multiplied by the velocity of the

weight. (W's velocity) = W%u =3pK(v—-u)u; this is a
max. when Su =v. The weight lifted in this case = ggva’.

The wheel would be kept at rest by a weight -g p Kv', therefore

the work performed by the wheel is a maximum when the
weight lifted is # of the weight that would keep the wheel at

rest.

159. To find the position of the rudder of a ship, when
the effect of the rudder in turning the ship is a maximum,

Let AP (fig. 33) be the keel of the ship, PE perpendicular
to the rudder. The resolved part of the resistance on the
rudder estimated in a direction perpendicular to 4P,

« (cos APE)*.sin APE. (86).
And this is a maximum when

= (cos APE)*~ 2 (sin APE)*.cos APE, or sin APE = ‘}\/3

® o Tt -
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160. To ﬁnd the resistance on a sphere.
Let the center of the sphere be the origin of the co-ordi-

nates, a the radius of the sphere, and, therefore, 2*+ y* = a® -

the equation to its generating circle. Then, y + 2d,z2= 0,
@' =&+ g = 2’ {1 + (d,2)'} = (¢* = o) {1 + (dy2)*} ;

. y VA y y ¢
T+ ey YT f,x +(d2) 2 4d
y.__-"__ s
y 1+ (dya)* 4’
and the resistance on the sphere = { pv*ra’.

+ ¢

The resistance on a circular plate, the radius of which is
a, =4pv'xra’, therefore, by the theory, the resistance on a
sphere is half the resistance on & circular plate of the same
radius as the sphere. The actual resistince is about one
third of the resistance on the circular plate. (Col. Beaufoy’s
Nautical Experiments, Vol. 1. page 481.)

If the density of the sphere= g, its mass = o §xa® and
the retarding force arising from the resistance of the fluid

3
= (resistance) -~ (mass of the sphere) = 1%&:; .
U .
161. Example of the determination of the weight of a

given volume of water.

A brass sphere appeared to weigh 28704,5 grains when
suspended in air, and 49,8 grains when suspended in water;
the volume of the sphere at 16°§ was 118,5264 cubic inches;

the temperature of the water 18°9; the temperature of the \

air 19°,44; the altitude of the mercury in the barometer 29,74
inches; the weights were of brass, the density of which is

probably about 8 times the density of water. Brass expands

0,0000576 of its volume for one degree of heat, therefore the
volume of the sphere at 18°,9 = 118,5409 cubic inches. w - x
= 28654,7 grains, therefore, neglecting the small quantities
U, W', X/, the weight of a cubic inch of water at 18°,9 = (W — X)

=V =252} grains nearly. U = weight of 118,54 cubic inches -

of air at 19°44, under the pressure of 29,74 inches of mercury

[P . e ——— =
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at 19°44 = 34,17 grains. W'— X'= weight of air displaced by
28654,7 grains of brass = 1 (34,47) = 4,27 grains. Hence, the
weaght of 118,5407 cubic inches of water at 18%9 = 28684,6
grams, and the waght of one cubic inch = 252,637 grains.

162. Example of the comparison of the specnﬁc gravities
of two fluids.

A glass flask being filled with mercury at 20,6, the mercury
appeared to weigh 1840,898 grammes ; when filled with water at
20,5, the water appeared to weigh 98,7185 grammes ; the weight
of the air contained in the flask = 0,1186 grammes; therefore
the true weight of the water = 98,8371 ; and the true weight of
the mercury = 1341,0116. - The apparent expansion of mercary
in glass, between 0" and 100°, = 0,0154, therefore the true
weight of the mercury. contained in the flask at 20%3

= 1341,0116 + (.0000154) (1841) = 1841,0828 ;
_ S.G.mercury at 20°%5  1341,0328
S.G.water at 20°%5 98,8371

Between 0° and 20°,5 the expansion of mercury = 0,00369
and the expansion of water = 0,001698 ;
. 8.G.mercury at 0° 1,00869

S.G.water at 0° = 13,3681 1,001698

= 18,5681,

= 18,5952,

163. The pressure of a fluid is frequently expressed in
¢ atmospheres,” an atmosphere denoting the pressure of a

column of mercury at 0°C, 0,76 métres, or 29,9218 inches

high, at the mean level of the sea in lat. 45°. At the mean
level of the sea in lat. A, an atmosphere is the pressure of a
column of mercury at 0°C, 0,76 + 0,001946 cos 2\ métres, or
29,9218 + 0,0766 cos 2\ inches high.

If 1 be the temperature of steam, Y its pressure in at-
wospheres, it is found that up to 224°, and probably much
higher,

T = 100+ 64,29512 (log,, Y) + 18,89479 (log,, Y)*
+ 2,909769 (log), Y)* + 0,1742634 (log,, Y)*. -

log,, 64,29512 = 1,8081780, log,, 18,80479 = 1,1428520,

log,,2,909769 = 0,4638586,  log,, 0,1742634 = 1,2412062.

T e M Lt e ™ et— e g B ———
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Pressure of vapour at different temperatures from - 20°
to 85° in inches of mercury, deduced from the observations

of Kimtz:

-20°,.....0,040
=15 .c....0,060
-10......0,087
- 5 ......0,126
0......0,180
1......0,194
2......0,207
$......0,222
4......0,288
5 eeue 0,254

6......0,272
T ceeee.0,290

9......0,382
10 ......0,854
11 ......0,378
12 ......0,408
18 ...... 0,480
14 ......0,457
15 ......0,488

16°...... 0,519 | 26°......0,949
17 ......0,558 | 27 ......1,006
18 ......0,588 | 28 ......1,066
19 ...... 0,625 | 29 ......1,029
20...... 0,664 | 30 ......1,195
21......0,705 | 81 ......1,265
22 ......0,750 | 82 ,.....1,388
28 ...... 0,796 | 88 ......1,415
24 ...... 0,844 | 34 ......1,496
25......0,895 | 85 ......1,580

164. Ratios of the specific gravities of different sub-
stances to that of water at 15°,5C, or 60°F:

Diamond...cecvveuiee. 8,52
Sulphur .......ceceeeee. 2

Phosphorus............ 1,75
Todine....c.cccveevence. 4,94
Natrium ...c.cceceeeee. 0,972
Kalium .....ccce00ee... 0,865
Selenium.......cecec.... 4,52
Arsenic ....cooeeeeenee. 5,959
Chrome ....c.cceeeeeee. 5,9

Molybdepum .......... 8,63

Tungsten ....ceeeeeneee 17,6
Antimony .............. 6,86
Tellurium ........... .. 6,2578
Titanium............... 5,8
GOld........-...._...-...1994'
Osmium................10,
Iridium......... ceees..18,68
Platina ........... ceeees21,58
Palladium .............. 11,8

Rhodium ...............11,2
Silver ...uviieeiiinnna 10,5
Mercury ...............18,568

Copper .......c...u... .. 8,85

Uranium.......ccecceee 9,

Bismuth............. vee 9,88
Tin ceceieiineecneanne. 75285
Lead .c.ooveevieeneenen 11,445
Cadmium .............. 8,604
ZiNC ceuveveeennneannens. 6,862
Nickel ....... eeetencecee 8,38
Cobalt ....cccceeeee.. eee 8,518
Iron .ceveenennne. ceccene 7,844

Manganese ............ 8,018

Flint Glass............ 8,88
Plate Glass............ 2,5

Marble ......cceeeeen... 2,716
Quartz........... ceecnes 2,6
Rock Salt .............. 1,92
Ivory cecvvviiennnnne. 1,017
Ice (at 0°) ....e.uen.en. 0,926
Sca Water ............. 1,027
Olive Oil...... cecennnen 0,915
Alcohol...... Cevereencas 0,7947
Naphta....... voennen eee 0,758
Ether cevveriiiirnnnnne. 0,724
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165. Hillstrém infers from his own experiments, combined
with those of Muncke and Stampfer, that the density of water
is a maximum at 3,92, and that between 0 and 30° the volume
of a given mass of water at #° divided by its volume at ¢

= ] — 0,000057577¢ + 0,0000075601 £ — 0,000000035091 £*,
and between 30° and 100°

= 1 — 0,0000004178¢ + 0,00000533661 £ — 0,0000000104086¢*.
From these two expressions the following table of the

volume and density of water at different temperatures has been
computed :

Temp. Volume. Density. Temp. Volume. Density.
0 | 1,000000 | 1,000000 | 22 | 1,002022 | 0,997982
1 | 0,999950 | 1,000050 | 23 | 1,002251 | 0,997754
2 | 0,999915 | 1,000085 24 | 1,002491 | 0,997515
3 | 0,999894 | 1,000106 | 25 | 1,002741 | 0,997267

3,0 | 0,999882 | 1,000118 | 26 | 1,008001 | 0,997008
4 | 0,999888 | 1,000112 | 27 | 1,008271 | 0,996740
5 | 0,999897 | 1,000108 | 28 | 1,008549 | 0,996463
6 | 0,999919 | 1,000081 | 29 | 1,008837 | 0,996178
7 | 0,999956 | 1,000044 | 30 | 1,004216 | 0,995802
8 | 1,000006 | 0,999994 1,005761 | 0,994272

9 | 1,000069 | 0,999981 1,007496 | 0,992560
10 | 1,000145 | 0,999855 1,009484 | 0,990654
11 | 1,000285 | 0,999765 1,011570 | 0,988568
12 | 1,000888 | 0,999662 | 55 | 1,018894 | 0,986297

18 | 1.000458 | 0,999547 | 60 | 1,0163898 | 0,988867
14 | 1,000581 | 0,999419 | 65 | 1,019078 | 0,981280
15 | 1,000720 | 0,999280 | 70 | 1,021920 | 0,978550
16 | 1,000872 | 0,999128 | 75 | 1,024921 | 0,975685
17 | 1.001085 | 0,998966 | 80 | 1,028072 | 0,972695
18 | 1,001210 | 0,998791 | 85 | 1,081864 | 0,969590
19 | 1,001897 | 0,998605 | 90 |.1,084791 | 0,966579
20 | 1,001594 | 0,998408 95 | 1,088846 | 0,968070

21 ' 1.001802 | 0,998201 | 100 | 1,042016 | 0,959678
{

E8& 88

el
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176. Ratios of the densities of gases and vapours of
different substances to that of atmospheric air, at the same
temperature and under the same pressure.

Oxygen ........... e 1,1026 Nitric Oxide ......... 1,098
Hydrogen ........ oo 0,0688 Hyponitrous Acid ... 1,5906
Nitrogen............. 0,976 Ammonia ....... ceeene 0,5912
Chlorine............. 2,44088 | Hydrochloric Acid ... 1,2544
Bromine ............. 5,895 Sulphurous Acid..... 2,21162
Iodine ..ccevvennenne. 8,70111 | Sulphuric Acid ....... 2,76292
Sulphur.............. 6,654 Arsenious Acid ....... 18,8
Phosphorus ......... 4,326 Naphta .......cceeeee. 2,96
ATSenic .oeeeeeennnnn.. 10,36536 | Ather ................ 2,586
Mercury ....... eees. 6,97848 | Protochl. of Mercury. 8,2
Water ...veeeeneeee.. 0,6201 Chloride of Mercury. 9,42
Alcohal .............. 1,6133 Cyanogen ....cee.cuuee 1,81879
Carbonic Acid....... 1,5245 Hydrocyanic Acid ... 0,94379
Nitrous Oxide ...... 1,5278 Carbonic Acid........ 1,5245

According to the experiments of Dr Prout, 100 cubic
inches of dry atmospheric air, free from carbonic acid, at 0°C,
under the pressure of 30 inches of mercury at 0°C, in the
latitude of London, weigh 82,7958 grains; and 100 cubic
inches of the same air at 15°55C (60°F), under the same
pressure, weigh 81,0117 grains. According to the observa-
tions of Dumas and Boussingault, the density of dry air at
0% under the pressure of one atmosphere, divided by the
maximum density of water = 0,0012095.

15
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